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ABSTRACT OF DISSERTATION 
 
 
 
 

EFFECT OF COMBINATION EXPOSURE TO ZIDOVUDINE AND 
SULFAMETHOXAZOLE-TRIMETHOPRIM ON IMMUNE RESPONSE IN MICE AND 

HUMANS 
 
 

     The drug-drug interaction involving zidovudine and sulfamethoxazole-trimethoprim 
was investigated using an in vitro culture system, an in vivo mouse model, and a clinical 
trial in HIV-infected patients.  We hypothesized that combination exposure causes 
immune cell populations in the bone marrow to undergo apoptotic cell death, and that 
the toxicity would affect the host response to an infectious stimulus. 
     Mice were dosed with zidovudine, sulfamethoxazole-trimethoprim, the combination 
of both drugs, or vehicle only control via oral gavage.  Focusing on B-lineage cells in the 
bone marrow, we determined that cells of the rapidly cycling, early pre-B cell subset are 
targeted, as well as pro-B cells earlier in development.  This toxicity was found to be cell 
cycle dependent, with an increase in percentage of cells in the S/G2/M phases of the 
cycle.  In vitro experiments using the drugs in a bone marrow culture system 
demonstrated that the effect of cytotoxicity with combination exposure is synergistic and 
concentration-dependent.  The mechanism of apoptosis that is induced appears to be 
caspase-independent. 
     To measure host response in mice, animals treated with zidovudine plus 
sulfamethoxazole-trimethoprim were infected with Pneumocystis murina pneumonia, 
and the group that received the combination of agents had a blunted antigen-specific 
IgG response, possibly due to a decreased number of B cells and activated B cells in 
the draining lymph nodes of the lungs. 
     A clinical trial was conducted in HIV-infected patients, dividing subjects into groups 
receiving zidovudine, sulfamethoxazole-trimethoprim, the combination of both, or 
neither agent.  Upon vaccination with the influenza vaccine, the combination treatment 
group had a blunted humoral response, with reduced antigen-specific serum IgG titers 
as compared to the control group.  We conclude that the drug-drug interaction involving 
zidovudine and sulfamethoxazole-trimethoprim is clinically-significant, and clinicians 
must consider this toxicity when treating patients with these agents concurrently. 
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CHAPTER 1.  Introduction 
 

 

A.  OVERVIEW 
 

     Patients infected with human immunodeficiency virus (HIV) undergo worsening of 

immunosuppression over the course of their illness.  While this is mainly a direct result 

of the virus, iatrogenic causes can be contributory.  Two common agents used in the 

treatment of this patient population include zidovudine (ZDV) and sulfamethoxazole-

trimethoprim (SMX-TMP).  Investigators recently reported that these agents have an 

additive toxic effect on immune cell populations in the spleen and peripheral blood (1).  

The purpose of this dissertation was to investigate the mechanism of this combined 

toxicity in mice, and to evaluate its impact on host response in both mice and humans. 

     With the ever-increasing number of agents on the market worldwide, drug-drug 

interactions continue to be a significant cause of morbidity and mortality among all 

patient populations, accounting for as much as 3-28% of hospital admissions (2, 3).  

Adverse drug reactions occur in 5-20% of hospitalized patients, many caused by drug-

drug interactions (4, 5).  Patients infected with HIV are at a high risk of developing drug-

drug interactions due to the large number of agents used to treat them.  The 

medications required to treat HIV-infected patients include antiretroviral drugs 

comprising highly active antiretroviral therapy (HAART), anti-infectives used for 

prophylaxis and treatment of opportunistic infections (OI), adjunct treatments for 

additional disease states, or additional agents to treat iatrogenic toxicities that many of 

these drugs can cause.  Many drug-drug interactions that are typical of patients with 

acquired immunodeficiency syndrome (AIDS) have been well described and reviewed 

(6).  Iatrogenic effects associated with these agents have the potential to adversely 

affect clinical outcomes among patients infected with HIV. 

     Advances in the treatment of HIV infection have increased patient survival and 

decreased morbidity and mortality so significantly that the disease is now considered to 

be a chronic condition.  With the availability of more effective antiretroviral regimens, 

researchers and clinicians have prolonged the time interval during which viral replication 
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is controlled and therefore effective immune function is maintained, prohibiting OI and 

other complications from HIV infection.  HAART benefits these patients by decreasing 

viral replication of HIV.  As a result, these patients are maintained long-term on 

treatment with a multitude of agents. 

     However, HAART therapy can also cause a variety of adverse effects that can 

impact morbidity and quality of life.  Bone marrow suppression is associated with the 

use of many antiretrovirals, with the highest incidence associated with ZDV.  It is 

important for clinicians treating HIV to understand the effects of these agents on the 

immune system.  Further immunosuppression from drug therapy could adversely 

influence the outcome of HIV treatment and enhance patient susceptibility to OI and 

malignancy.  This work will investigate the hypothesis that ZDV used in combination 

with SMX-TMP, another agent commonly used in patients infected with HIV, causes 

clinically-significant alterations to immune function that could contribute to impaired host 

defense.  By way of introduction, aspects of host defense in response to HIV infection 

will be presented.  This will be followed by a discussion of the impact that HIV-infection 

has on immune cell populations and their functions, including an overview of apoptosis 

and its role in HIV disease.  Drug therapy will then be applied to this overview, and the 

positive and negative aspects of treatment will be presented.  The focus will then turn 

toward ZDV and SMX-TMP, and the hypothesis that these drugs, when used in 

combination, adversely affect B cell development in the bone marrow, thus leading to 

significant immunologic impairment. 

 

 

B.  IMMUNE RESPONSE AND HIV INFECTION 
 

     HIV disease is characterized by CD4+ T lymphocyte depletion (7).  As the CD4+ cell 

population declines, it leaves the host susceptible to OI which, along with the patient’s 

CD4+ cell count, defines disease progression toward AIDS.  CD4+ cells die via direct 

cytopathologic effects of the virus, as well as by apoptosis induction due to exposure to 

viral antigens (8-11).  This leads to decreased immune surveillance, and increased 

incidence of OI and neoplasms. 
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     Primary immune response to HIV is both humoral and cell-mediated.  After 

dissemination of the virus to lymphoid organs and throughout the body, the immune 

response controls the burst of viral replication.  The virus is incompletely eliminated and 

goes into a state of persistent replication.  This characteristic is unique to HIV and is not 

found among other human viral pathogens (12).  During this phase, HIV becomes 

trapped in germinal centers of the lymph nodes.  CD4+ T cells migrate here as part of 

their normal response to infection, where they then become infected with the virus.  It is 

paradoxical that the very immune response which controls viral spread also effectively 

propagates the disease.  The immune system subsequently remains in an activated 

state for an extended period (12). 

 

Cellular immune response to HIV infection 
     The immune system controls the virus to extend the infected host’s survival by 

employing CD8+ T cells upon initial infection.  There is an increase in the number of 

HIV-specific CD8+ cytotoxic T lymphocytes (CTL) that inhibit viral replication by 

destroying virally-infected cells (13).  In addition to these activities, CD8+ cells also 

release anti-HIV macromolecules that combat the virus, including the chemokines 

RANTES (regulated on activation, normal T cell expressed and secreted), MIP-1α 

(macrophage inflammatory protein-1α), and MIP-1β (14).  These chemokines inhibit 

infection of activated CD4+ T cells by HIV by inhibiting chemoattractant cytokine 

receptor type 5 (CCR5), one of the several seven-transmembrane G-protein coupled 

chemokine coreceptors utilized by the virus for cell entry (15-17).  CD8+ T cell 

populations remain constant, keeping the patient in a clinical phase of latency for 

extended time periods.      

     Over time the CD8+ cell population will decline allowing the virus to increase 

replication, with resultant declines in CD4+ cell numbers.  There is a strong correlation 

between a decline in HIV-specific CTL activity and progression of the disease (18, 19).  

This eventually leads to uncontrolled viral replication and lymph node destruction in 

progressive illness (20).  Additionally, CD4+ T cells respond to HIV epitopes presented 

in the context of MHC class II (21).  This causes CD4+ cells to secrete interleukin (IL)-2 
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which, while helpful to aid cytotoxic responses, has also been shown to increase HIV 

replication (22). 

     In addition to death due to direct infection of the virus, cytotoxicity in CD4+ T cells 

also occurs by indirect means.  Infected cells can bind to uninfected CD4+ cells and 

deplete them (10).  This occurs because the molecular events associated with the 

fusion of the HIV viral envelope and the cell membrane that occur during infection can 

also occur when an infected CD4+ cell expressing viral envelope proteins comes into 

contact with an uninfected T cell.  This causes a “syncytium” of cells to form, thereby 

depleting them (23).  Another mechanism of indirect depletion occurs when uninfected 

CD4+ cells that express HIV proteins on their surface are killed by CTL responses in an 

“innocent bystander” phenomenon (24, 25).  The CD4 receptor will cross-link soluble 

viral proteins such as gp120 that, in the absence of TCR activation, induces apoptosis 

(26). 

     Impaired hematopoiesis can also lead to depletion in CD4+ cell numbers due to 

decreases in production.  Some CD34+ lymphoid progenitors in the bone marrow 

express CD4, and are therefore susceptible to the virus (27, 28).  HIV infection also 

increases Fas expression on CD34+ cells which increases apoptosis in these 

progenitors (29).  Fas is a “death receptor” through which cells are stimulated to 

undergo programmed cell death.  These mechanisms will be discussed below. 

     Finally, HIV infection can prime CD4+ T cells for apoptosis.  T cells from HIV patients 

undergo higher rates of apoptosis when compared to T cells from normal individuals 

(30, 31).  Infected cells are sensitized to undergo apoptosis if CD4 receptors have been 

cross-linked to the HIV envelope glycoprotein gp120, followed by T cell receptor ligation 

(30, 31).  Because activation of these cells triggers apoptosis, as T cells respond to an 

infectious stimulus they are depleted (26).  This occurs through the intrinsic 

mitochondrial pathway of apoptosis, although the details remain unknown (32).  The 

percentage of apoptotic CD4+ and CD8+ T cells in lymph node sections is three to four 

times higher in HIV-infected patients than in normal individuals (11). 

     In addition to loss of absolute cell numbers, HIV can also influence CD4+ T cell 

function through decreased production of IL-2 and decreased expression of the IL-2 

receptor (33).  This, in addition to the decreased expression of CD40 ligand discussed 
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below, can decrease the functionality of the remaining CD4+ T cells in HIV-infected 

patients. 

 

Humoral immunity in HIV infection 
     Several types of antibodies are produced in response to HIV disease.  Beginning 

with primary infection, antibodies to the viral core protein p24 develop, which decreases 

viremia in the early stages of infection (34).  The eventual decline in response to p24 

antigen correlates to disease progression in later stages of illness (35, 36).  Other 

antibodies can be present that neutralize HIV that are viral isolate-specific, most often 

targeting the HIV envelope protein gp120 (37, 38).  Some of these antibodies inhibit the 

interactions between HIV and CCR5, which prevents the entry of the virus into the CD4+ 

cell (39).  Other antibodies can neutralize a wide range of viral isolates, and the 

presence of these more broadly-specific antibodies correlates with slower disease 

progression (35, 40, 41).  Despite the positive effects of neutralizing antibodies against 

HIV, it has also been demonstrated that some antibodies present in HIV-infected 

individuals can actually enhance replication of HIV in vitro (42, 43). 

     HIV infection severely damages the humoral immune response which incurs 

phenotypic and functional alterations.  HIV infection results in increased proportions of B 

cells with an activated phenotype, resulting in a hyper-production of gammaglobulin 

(IgG) (44, 45).  Despite having elevated IgG levels, HIV-infected individuals have an 

impaired ability to produce specific antibodies in response to neo-antigens (46-50).  The 

decrease in antigen-specific IgG titers in HIV-infected individuals has been positively 

correlated with CD4+ T cell count, and inversely correlated to viral load (51). 

     B cells in patients infected with HIV do not upregulate CD70 normally after being 

stimulated by activated T cells, which impairs CD70-dependent immunoglobulin 

synthesis (52).  The interaction which up-regulates CD70 expression, between CD40 on 

B cells and CD40L on T cells, is also affected by a decrease in CD40L expression on T 

cells in HIV-positive patients, meaning that the defect in antigen-specific Ig production is 

also a result of CD4+ T cell dysfunction (52).  Additionally investigators have shown that 

memory B cells (CD27+) are depleted from the blood of HIV-infected individuals, 

possibly due to persistent T cell activation (53).  In clinical trials examining B cell 
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responses in AIDS patients, it is unknown if drug therapy plays a role in B cell 

malfunction, since this issue has not been studied (46-50). 

     Dysfunction of the humoral immune system leads to the inability of the patient to 

properly control extracellular pathogens (54).  These include extracellular bacteria, 

parasites, and fungi, such as Streptococcus pneumoniae and Pneumocystis (54-56).  

Although the rate increases as CD4+ count decreases, bacteria are still the most likely 

cause of pneumonia in an HIV-infected patient with a high CD4+ cell count, with 

pneumococcus being the most likely cause in this subset of patients (57).  This example 

illustrates the impact of B cell dysregulation on host defense in HIV disease. 

 

Apoptosis 
     Apoptosis is an important mechanism of homeostasis in adult tissues by the 

activation of a controlled cellular self-destruction program.  This occurs for the removal 

of infected, transformed, or damaged cells that can be induced by a variety of stimuli, 

including death receptor ligation, the absence of growth and survival factors, starvation, 

DNA damage, viral infection, anticancer drugs, and ultraviolet radiation (58).  Apoptotic 

cells have a distinct morphology which includes membrane blebbing, exposure of 

phosphatidylserine to the outside of the plasma membrane, nuclear fragmentation, and 

chromatin condensation (59, 60).  Cells ultimately lyse and are fragmented into 

apoptotic bodies, which are engulfed by macrophages without causing an inflammatory 

response (61, 62).  As mentioned above, apoptosis plays an important role in HIV-

infection. 

     Cell death is divided into two main types: programmed cell death, during which the 

cell plays an active role in its demise, and passive death (necrosis).  Apoptosis occurs 

as a result of a host of stimuli, and it proceeds through a small number of distinct 

pathways (58).  The two major signaling cascades utilize a family of cysteine proteases 

called caspases, a group of highly-regulated enzymes that undergo cleavage and 

activation during apoptosis (63-65).  The extrinsic cascade originates from the activation 

of cell membrane death receptors resulting in caspase activation, and the intrinsic 

pathway involves mitochondrial release of pro-apoptotic factors to activate caspases to 
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induce apoptosis (66).  Additionally, apoptosis can occur in a caspase-independent 

manner (discussed in Chapter 6) (67, 68). 

     The extrinsic pathway originates from the ligation of death receptors on the cell 

surface, including Fas (CD95), TNF-related apoptosis-inducing ligand receptors (TRAIL-

R), and TNF-receptor 1 (TNF-R1) (69, 70).  Fas ligand (FasL) is expressed by CTL and 

some activated CD4+ T cells.  They recognize cells to be terminated through antigen 

presentation in the context of MHC.  The TRAIL-receptors function in maintaining 

immune system homeostasis, so that activated cells can be deleted in a form of 

regulation (71).  These receptors have death domains that trimerize upon ligation, 

thereby recruiting Fas-associated death domain protein (FADD) or TNF-R-associated 

death domain protein (TRADD).  Pro-caspase-8 is then recruited and activated, which in 

turn activates caspase-3, the main effector caspase through which both pathways flow, 

which signals the cell to undergo apoptosis (72, 73). 

     The intrinsic pathway centers on the mitochondria.  Different stressors including 

ultraviolet radiation, growth factor withdrawal, and drug exposure can cause the release 

of cytochrome c from the mitochondria via complex mechanism of regulation, governed 

by proteins in the Bcl-2 family.  This family contains anti-apoptotic (Bcl-2, Bcl-XL) and 

pro-apoptotic (Bax, Bid) members that exert their affect on the mitochondria by 

preventing or inducing mitochondrial dysfunction (74, 75).  These proteins are under the 

control of p53 gene transcription (76).  Increases in cytochrome c release can also be 

induced through the extrinsic pathway with a “crosstalk” signal utilizing caspase-2 (77).  

Cytochrome c then activates caspase-9, which in turn activates the effector caspases 

through caspase-3, causing apoptosis (78).  CTL can also induce apoptosis through 

granzyme B secretion, which directly activates caspase-3 (75).  The mitochondria can 

also be stimulated to release apoptosis-inducing factor (AIF), which is a caspase-

independent pathway that can also lead to apoptosis (see Chapter 6 for details). 
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C.  DRUG TREATMENT:  THE GOOD AND THE BAD 
 
Efficacy of HAART 
     HAART controls viral replication in infected patients, thereby increasing CD4+ T cell 

counts and improving patient survival (79-81).  HAART targets a variety of viral 

processes to decrease the impact of mutations that result in resistance to therapy.  

Many investigations have shown that the number and function of CD4+ cells increases 

in response to successful viral load reduction with HAART (82-85).  In one example, a 

study involving 44 HIV-positive patients, Lederman et. al. found that  CD4+ cells’ 

proliferative capability and delayed-type hypersensitivity reaction potential were both 

improved after 12 weeks of treatment with a combination of ZDV, lamivudine, and 

ritonavir (83).  Similarly, HAART not only decreases direct viral attack on CD4+ cells, but 

also restores T cell proliferation, as Lu et. al. demonstrated in CD4+ and CD8+ T cells in 

vivo and in vitro in 99 adults infected with HIV (86).  Investigators in this study treated 

patients with combination therapy for one year, and enhanced ability of T cells to 

survive in vitro was associated with the use of the protease inhibitors (PI) indinavir and 

ritonavir (86).  As a consequence of these effects, the addition of PI to HAART allows 

for a more effective defense against opportunistic pathogens such as cytomegalovirus 

(CMV), Pneumocystis jirovecii, and Candida albicans, resulting in a decrease in patient 

mortality (82, 87-89). 

     Antiretroviral therapy has many positive effects on the bone marrow of infected 

individuals.  Bone marrow progenitor cells are adversely affected by HIV causing 

impaired hematopoiesis.  CD34+ progenitor cells in the bone marrow of patients infected 

with HIV typically have an increase in Fas and Fas ligand expression, and an 

overproduction of tumor necrosis factor-α (TNF-α), an inflammatory cytokine that can 

increase toxicity to bone marrow progenitor CD34+ cells (29, 90).  HIV infection thereby 

increases the apoptosis rate of CD34+ progenitor cells in the bone marrow.  Isgro et. al. 

demonstrated that HAART reduces this destruction by decreasing Fas expression on 

the surface of these progenitors (90).  This group showed this using in vitro culture of 

bone marrow aspirates from HIV-infected patients pre- and post-HAART (90).  The 

expression of TNF-α was also decreased as a result of HAART in bone marrow cells 
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from HIV patients cultured ex vivo (90).  This effect was postulated by the investigators 

to be due to the presence of PI (90). 

     Sloand et. al. demonstrated that these agents can also decrease apoptosis rates and 

caspase-1 content in CD4+ cells (91).  Caspase-1, also known as interleukin-1β-

converting enzyme, is a cell signaling protein in CD4+ T cells that is preferentially 

expressed in cells of HIV-infected patients (91).  Caspase-1 mediates apoptosis in 

these cells, and when inhibited reduces activation-induced cell death (92).  This group 

demonstrated that the addition of ritonavir to cultured bone marrow cells from HIV-

infected subjects increased colony formation and decreased apoptosis in CD34+ cells, 

and that this effect was blocked by the addition of a caspase-1 inhibitor (93).  These 

studies highlight the ability of PI to directly affect cells in the bone marrow. 

     An additional benefit of HAART and subsequent virologic control is the decreased 

incidence of AIDS-associated neoplasms.  Clinicians use HAART therapy to decrease 

the occurrence of Kaposi’s sarcoma and non-Hodgkin’s lymphoma (94, 95).  HAART 

restores immune surveillance which leads to a decrease in incidence of OI and cells 

that have undergone oncogenic transformation. 

 

Toxicity of HAART 
     Bone marrow suppression in this patient population can be caused by a variety of 

insults.  In addition to direct viral effects, iatrogenic suppression from HIV therapy, 

neoplasms, malnutrition, and OI (including cytomegalovirus, Mycobacterium avium 

complex (MAC), and histoplasmosis) can adversely affect bone marrow cell survival and 

replication (96).  Anemia, thrombocytopenia, lymphopenia, and neutropenia are found in 

most AIDS patients.  Bone marrow in patients with AIDS displays a host of pathologic 

processes, including lymphocyte infiltration, dysplasia, reticulin fibrosis, granulomatous 

myelitis, and plasmacytosis (97, 98).  HIV-infected patients with advanced disease also 

have high incidences of the aforementioned neoplasms, particularly Kaposi’s sarcoma 

and non-Hodgkin’s lymphoma, hypothesized to be due in part to a decrease in immune 

surveillance (99).  Although many of these maladies are directly associated with the 

virus, drug regimens also have significant adverse effects on immune functions.  

Investigators have studied and characterized these adverse effects associated with 
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drug therapy via in vitro, animal, and human studies.  Clinicians must also be aware of 

the potential toxicities associated with the use of these agents. 

     ZDV is associated with the most potent myelosuppressive effects among available 

antiretrovirals (100, 101).  The reported clinical incidence of bone marrow toxicities 

associated with ZDV, including anemia, neutropenia, and granulocytopenia, ranges 

from 2 to 45% (102-105).  Increases in the mean corpuscular volume of red blood cells 

is a hallmark of ZDV therapy, its incidence so reliable that it has been shown to be a 

valuable marker for HAART adherence (103, 106).  Several groups have shown that 

ZDV affects lymphocytes in their early stages of development in the bone marrow (107-

109).  The triphosphorylated form of ZDV is the active form of the drug.  However, the 

monophosphorylated form is responsible for its toxicity by inhibiting thymidylate kinase 

and lowering intracellular thymidine pools (107).  This toxicity is associated with an 

inhibition of hematopoietic progenitors in murine and human bone marrow (108-110).  

This is likely due to the fact that these progenitors tend to be more actively cycling than 

are mature lymphocytes. 

     Nucleoside reverse transcriptase inhibitors (NRTI), especially ZDV, induce apoptosis 

in immune cell populations of HIV-infected patients (111, 112).  Viora et. al. found 

inhibited cell cycle progression and increased apoptosis in human peripheral blood 

mononuclear cells exposed to clinically relevant concentrations of ZDV and 

dideoxycytidine (ddC) in vitro (111).  Several groups have demonstrated ZDV-induced 

mitochondrial dysfunction in hematological cells because of the drug’s affinity for 

mitochondrial DNA polymerase gamma (113-116).  Other investigators have shown that 

ZDV makes cells more susceptible to apoptosis by inducing mitochondrial membrane 

hyperpolarization (112, 117).  Additionally, investigators have shown didanosine to 

cause mitochondrial toxicity in human cell lines (113).  Clinical studies examining other 

cell types have demonstrated that these agents cause mitochondrial toxicity in HIV-

positive patients, which is then associated with an increased incidence of 

hyperlactatemia and lipodystrophy (116, 118).  The clinical manifestations of NRTI-

induced mitochondrial toxicity resemble those of inherited mitochondrial diseases, 

including lactic acidosis, myopathy, nephrotoxicity, peripheral neuropathy, and 

pancreatitis (119). 
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     Conversely, PI prevent ZDV-induced apoptosis (93, 120-122).  In a study by 

Matarrese et. al., apoptosis induced by various stimuli in activated T cells cultured from 

the peripheral blood of HIV-infected patients was decreased through an increase in 

mitochondrial membrane potential by saquinavir, lopinavir, and indinavir (120).  

Interestingly, one of the agents used to induce apoptosis was ZDV (120).  The addition 

of PI in this study decreased lymphocyte apoptosis by influencing mitochondrial 

homeostasis.  Apoptosis in cultured T lymphocytes obtained from HIV-infected subjects 

in another study decreased with the addition of nelfinavir to combination antiretroviral 

therapy (122).  This mechanism is postulated to be due to activated lymphocytes having 

hyperpolarized mitochondrial membranes, which make the cells prone to apoptosis.  PI 

are able to stabilize the mitochondria in these cells.  Therefore, with combination 

therapy, the addition of a PI could be beneficial not only to decrease viral replication and 

mutation, but also through this direct affect on lymphocyte apoptosis. 

     ZDV also causes a decrease in T cell responses to antigens, as well as a depletion 

of T cell populations in the thymus in mice (123).  CD4+CD8+ (double-positive) cell 

numbers in the thymus were decreased as a result of ZDV exposure after mice were 

dosed via oral gavage for a period of 14 days.  However, T cell populations in the 

peripheral blood of these animals were unaffected.  At higher doses (1000 mg/kg/day), 

thymus atrophy occurred.  When cultured from treated animals, T cell proliferation to 

antigenic stimuli was decreased significantly (123).  IL-2 exposure reversed the effects 

that ZDV had on T cell populations and on their function in this investigation (123).  In 

another study, Gallicchio et. al showed that IL-1 activity decreased the toxicity of ZDV 

on murine hematopoietic cells in vitro (124).  These studies conclude that the 

mechanism of toxicity to T lymphocyte development could be due to inhibition of 

cytokine production.  Investigators have used IL-2 successfully in clinical trials to 

increase lymphoproliferation in HIV patients, lending further support to this notion (125, 

126). 

     Several other reverse transcriptase inhibitors adversely affect the bone marrow.  

Zalcitabine-associated neutropenia has been reported in up to 17% of patients in clinical 

trials (127-129).  Didanosine, lamivudine, and delavirdine also cause neutropenia, but 

incidence rates are less than 10% (129-132).  The incidence of granulocytopenia 
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associated with delavirdine increased from 16% to 63% with ZDV co-administration in a 

phase I/II trial involving 85 patients (132).  PI suppress the bone marrow as well, 

although at a much lower incidence and severity than ZDV.  Indinavir causes 

neutropenia in rare cases, and is associated with an anemia rate of less than 2% (133, 

134).  Saquinavir and nelfinavir cause mild dose-related neutropenia in clinical studies, 

however this is typically not clinically significant (135-137). 

 

Anti-infectives and immunosuppression 
     Medications commonly used for prophylaxis and treatment of OI in HIV-infected 

patients can also have adverse effects on bone marrow.  Foscarnet is used to treat 

CMV retinitis and herpes simplex virus in HIV positive patients.  Use of this antiviral 

agent can cause anemia, leucopenia, granulocytopenia, and thrombocytopenia (138, 

139).  However, it is associated with a much lower incidence of severe, dose-limiting 

leucopenia than ganciclovir, another agent that is used in this patient population to treat 

CMV.  Foscarnet can be given safely to patients with HIV, as demonstrated in a clinical 

study of ten patients with newly diagnosed CMV retinitis who received induction and 

maintenance therapy (140).  Additionally, cidofovir causes neutropenia in as many as 

20% of patients using the drug for CMV retinitis (141).  Much of the toxicity associated 

with these agents is due to their use in combination with ZDV, which is discussed in the 

subsequent section. 

     Agents that affect folic acid synthesis such as dapsone, trimetrexate, pyrimethamine, 

and SMX-TMP are used in HIV-infected patients for the treatment and prophylaxis of 

Pneumocystis jirovecii pneumonia (PCP) and toxoplasmosis.  These agents also cause 

bone marrow toxicity and may contribute to immunosuppression in this patient 

population.  Dapsone is often used in the prophylaxis of PCP in patients with AIDS who 

are unable to tolerate SMX-TMP.  Severe hematologic effects reported with dapsone 

use include agranulocytosis, aplastic anemia, and hemolytic anemia at estimated 

incidences of less than 1% (142-144).  Trimetrexate, another agent used in the 

treatment of moderate to severe PCP, causes a high rate of myelosuppression (145, 

146).  Sattler et. al. reported that 46% of 25 patients receiving various doses of 

trimetrexate (ranging from 45 to 90 mg/m2) in combination with folinic acid 
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(Leucovorin®) experienced dose-modifying hematologic toxicity (146).  Pyrimethamine 

can also be used in the treatment and prevention of toxoplasmosis and Pneumocystis in 

AIDS patients, and is associated with causing megaloblastic anemia, leucopenia, and 

thrombocytopenia (147, 148).  Folinic acid is often dosed with pyrimethamine in order to 

decrease these effects.  Clinicians must be aware of the bone marrow toxicity 

associated with the use of these agents, and exercise caution when combining these 

drugs and ZDV, which can have additive toxicities. 

     SMX-TMP, the drug of choice for the prophylaxis and treatment of PCP, is 

particularly problematic with regards to bone marrow suppression.  A higher than 

normal incidence of adverse reactions is associated with the use of SMX-TMP in 

patients with AIDS (149-151).  SMX-TMP treatment-limiting adverse events occur in 60-

80% of HIV-infected patients, whereas that rate is approximately 15% in non-HIV 

infected individuals (149, 150).  The toxicities of this combination, based on in vitro data, 

are attributable to the oxidative metabolites of SMX (152).  Patients with HIV infection 

have depleted intracellular glutathione (GSH) concentrations, a molecule utilized by 

cells as a reducing agent for the detoxification of oxidative species (153, 154).  GSH is 

responsible for the conversion of toxic SMX metabolites back to the parent compound, 

which is then metabolized to non-toxic species and eliminated (155, 156).  Investigators 

have linked this depletion of GSH by the virus to SMX-TMP intolerance in HIV-infected 

patients (153, 154).  This will be discussed in detail in Chapter 4. 

 

Antiretroviral drug-drug interactions and bone marrow toxicity 
     When treating patients infected with HIV, clinicians should take caution in 

considering potential drug-drug interactions that could adversely affect immune function, 

particularly interactions involving ZDV.  Combining ZDV with agents that affect its 

metabolism can lead to increased toxicity.  Fluconazole, atovaquone, and methadone 

all interfere with the clearance of ZDV (157-159).  Fluconazole increased the area under 

the concentration versus time curve (AUC) by 74% after 7 days of dosing in a 

randomized, crossover study of 12 men infected with HIV (157).  In an open-label, 

randomized, crossover study of 14 patients examining concurrent atovaquone therapy, 

the AUC of ZDV was increased by 31% (160).  Additionally, probenecid, which is 
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typically administered with cidofovir to prevent nephrotoxicity, can decrease the renal 

clearance of ZDV (161, 162).  Clinicians should consider these drug combinations when 

investigating causes of hematologic toxicity in patients who are HIV positive. 

     Caution must also be taken when prescribing PI, as they have the ability to inhibit 

cytochrome P450 (CYP) liver enzymes that are responsible for the metabolism of many 

drugs (163, 164).  Ritonavir is the most potent inhibitor, but other PI, including 

saquinavir, indinavir, and nelfinavir will also inhibit CYP3A4 to a clinically significant 

degree.  This inhibition has the potential to increase the exposure to drugs metabolized 

by this isoenzyme, which could lead to bone marrow suppression if used with agents 

that cause this type of toxicity.  Additionally, the non-nucleoside reverse transcriptase 

inhibitor (NNRTI) delavirdine inhibits CYP3A4, and can increase the concentrations and 

risk of toxicity of the PI (164). 

     Drugs used in combination with antiretrovirals can also increase hematologic toxicity, 

independent of pharmacokinetic interactions.  These interactions are presumed to be 

due to additive or synergistic bone marrow toxicity, but the precise mechanisms of the 

combined toxicities of most of these combinations remain unstudied.  Investigators have 

defined several  interactions associated with combination therapy with ZDV that are 

independent of systemic pharmacokinetic mechanisms.  These studies are summarized 

in Table 1.1.  Little is known about the clinical impact of co-treatment with antiretrovirals 

along with these other medications. 

     The use of ZDV with ganciclovir caused an incidence of severe to life-threatening 

hematologic toxicity in 82% of patients in a phase I, multicenter study of 41 patients with 

AIDS-related CMV infection (165).  The conclusions of this study confirmed that patients 

receiving ganciclovir usually cannot tolerate the full recommended dose of ZDV 

(600mg/day) (165).  In a retrospective study of 32 patients with AIDS, combining 

didanosine with ganciclovir was much better tolerated than combining ZDV with 

ganciclovir (166).  Nine percent of patients given didanosine plus ganciclovir in this 

study developed dose-limiting hematologic toxicity versus 28% of patients in the ZDV 

plus ganciclovir group (166). 
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Table 1.1  Summary of ZDV drug-drug interaction literature. 
Interactions with concomitant exposure with ZDV that are independent of systemic 
pharmacokinetic mechanisms. 

 

 

     In a clinical trial comparing the safety and efficacy of foscarnet versus ganciclovir for 

the treatment of CMV retinitis in patients with AIDS, subjects receiving foscarnet had a 

mortality rate of 36% as compared to 51% in the patients receiving ganciclovir (167).  

Subjects receiving ZDV had the drug held in the ganciclovir treatment group during the 

initial phase of therapy, and then reinstated at a lower dose thereafter (300mg/day).  

Even with this alteration in antiretroviral therapy, the relative risk of neutropenia (1.88) 

was higher in the patients receiving ganciclovir compared to foscarnet (167). 

     In animal models, ZDV used in combination with dapsone, clarithromycin, or 

TMP/SMX causes hematopoietic toxicity due to additive effects (1, 168, 169).  In a study 

Drug Effect Study Type Refs Comment 
Ganciclovir Leucopenia, 

granulocytopenia 
Clinical 165, 166, 

167 
Severe, must 
decrease AZT 
dose or 
discontinue 

Foscarnet Leucopenia, 
granulocytopenia 

Clinical 138, 139, 
140, 168 

Much lower 
incidence/ 
severity than 
ganciclovir 

Dapsone Decrease T cell ex 
vivo proliferation 
Hematologic 
toxicity 

Mouse, ex vivo 
 
Clinical 

168 
 
170 

 
 
10% incidence 

Clarithromycin Neutropenia, 
lymphopenia 

Mouse 169 Decrease splenic 
cellularity 

TMP/SMX Decrease B cells/ 
macrophages in 
spleen 

Mouse 1  

Protease 
inhibitors 

Decrease AZT-
induced apoptosis 
in T cells 

Human, ex vivo 120, 121 Stabilize 
mitochondrial 
membrane 
hyperpolarization 
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by Freund et. al., concurrent administration of ZDV and dapsone increased the severity 

of ZDV-induced macrocytic anemia in normal mice (168).  The investigators also 

demonstrated a decrease in proliferation when T cells were taken from mice treated 

with the drug combination and stimulated ex vivo (168).  In a clinical study comparing 

safety and efficacy of dapsone to pentamidine in HIV-infected patients on ZDV, 6 out of 

50 patients receiving dapsone experienced significant hematologic toxicity (170).  

Dapsone should be utilized with caution in patients receiving ZDV. 

     Administration of ZDV with clarithromycin is also of concern.  Combination dosing in 

normal mice for 28 days resulted in severe hematotoxicity, with a significant decrease in 

neutrophil and lymphocyte populations in the peripheral blood, as well as a reduction in 

splenic cellularity of 67% (169).  Although the mechanism for this augmentation of 

toxicity is unknown, the authors cited the ability of clarithromycin to inhibit cytokine 

production in several cell types (169, 171-173).  While clarithromycin is clinically 

effective in the treatment of MAC (174, 175), it has also been associated with a possible 

increased mortality rate in HIV-infected patients (175, 176).  This group randomly 

assigned patients with MAC bacteremia to receive twice-daily clarithromycin at doses of 

500mg, 1000mg, and 2000mg for 12 weeks (175). For each group, mycobacteremia 

decreased during the 12 weeks.  Unfortunately, treatment-limiting toxicity caused by 

clarithromycin occurred in 20% to 40% of patients, and patients receiving the higher 

doses of clarithromycin had higher death rates than did those treated with the 500-mg 

dose (175). 

 

ZDV in combination with SMX-TMP 
     It is common for patients infected with HIV to be treated simultaneously with ZDV 

and SMX-TMP.  However, the impact of concurrent exposure on the bone marrow in 

these individuals is unknown.  Freund et. al. investigated the combined toxicity of ZDV 

and SMX-TMP in normal mice (1).  Exposure to ZDV plus SMX-TMP via oral gavage 

caused severe pancytopenia, a significant decrease in splenic cellularity, a significant 

decrease in splenic macrophage number, and a trend toward a decrease in splenic B 

lymphocytes (1).  Since these differences were found in the combination treatment 

group, yet the single drug groups receiving either SMX-TMP or ZDV did not differ from 
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control, it was concluded that this drug combination causes a synergistic toxicity to 

cellular immunity, and could be contributory to the immunosuppressive state of AIDS 

patients.  Additionally, combination treatment did not affect T lymphocyte populations in 

the spleen (1).  This could be because they mature in the thymus instead of the bone 

marrow, or because in mature animals, T cell development in the thymus decreases, 

and the T cell repertoire is maintained mainly by dividing T cells in secondary lymphoid 

sites (177). 

     Because the cell types that are affected originate in the bone marrow, and because 

of the known adverse affects of SMX and ZDV, we hypothesized that this is the location 

of the toxicity.  In this work we have extended these studies to investigate whether 

SMX-TMP in combination with ZDV significantly interferes with development of cells in 

the bone marrow of mice, while focusing our efforts on those of the B lymphocyte 

lineage.  We speculate that this drug-drug interaction could contribute to the impaired B 

cell function commonly seen in HIV patients (44, 45). 

 

 

D.  B CELL DEVELOPMENT 
 
     Mouse bone marrow contains B lineage cells in all stages of development, as they 

mature from stem cells, to common lymphoid progenitors, to early immature B cells, to 

mature B lymphocytes.  These cells can be characterized and phenotypically delineated 

by examination of cell surface markers found on each cell type (178).  Development of 

B cells progresses through a series of checkpoints in which the cells display a certain 

combination of these surface proteins, each with a particular function. 

     Cells undergo positive and negative selection processes in order to develop a B 

lymphocyte population that can respond to environmental pathogens effectively, without 

reacting with self antigens, thereby preventing autoimmunity.  This diverse B cell 

repertoire is developed by genetic recombination, and kept in check by negative 

selection, which makes cells that are autoreactive undergo programmed cell death.  

This is of particular interest to us, because as will be demonstrated in this work, B-

lineage cells undergo an increased rate of apoptosis as a result of exposure to ZDV 
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plus SMX-TMP.  Apoptosis occurs as a normal part of homeostasis when cells are in 

the presence of a death signal or in the absence of a survival signal.  We have 

investigated the mechanism by which ZDV plus SMX-TMP causes apoptosis in B-

lineage cells. 

 

Development mechanisms 
     Immature B cell subsets are defined by the assembly and expression of antigen 

receptor genes and other surface proteins that distinguish the different functional stages 

of development (179).  Antigen specificity of each cell is determined through the 

complex genetic rearrangement and recombination of genes in the variable regions of 

both the heavy and light chains of the B cell receptor (BCR) (180, 181).  Antibody 

diversity is forged here via recombination of different gene segments, and through the 

addition and subtraction of nucleotides that occurs at the joints of these genes during 

this process (180). 

     Genetic recombination begins with the genes at the heavy chain locus under the 

governance of the proteins RAG-1 and RAG-2, products of the recombination-activation 

genes (182, 183).  This causes the cell to express a heavy chain along with a 

“surrogate” light chain that makes up the pre-BCR (184, 185).  Expression of this 

receptor constitutes a productive genetic rearrangement at the heavy chain locus, which 

signals the cell to stop genetic rearrangement and to start dividing, thus allowing the cell 

to progress to the next stages of development.  This signal to stop is manifested by 

degradation of RAG-2, and by suppression of mRNA synthesis for both RAG-1 and 

RAG-2 (186).  Cells that do not express the pre-BCR will die via apoptosis. 

     Cells then undergo a burst of proliferation, increasing the number of cells that 

possess successfully rearranged heavy chains by 30- to 60-fold (178, 187).  Cells then 

upregulate RAG-1 and RAG-2 once again to rearrange the genes at the light chain loci.  

Rearrangement of genes that make up the light chain will then produce the protein that 

joins with the heavy chain that leads to surface expression of the BCR (IgM).  If the 

BCR encounters an antigen that it can cross-link to, the cell will either halt its 

development and be deleted via apoptosis (high-affinity interaction), become anergic, or 

revise its BCR to eliminate self-reactivity (low-affinity interaction) (188-190).  This 
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process of negative selection will protect the host from the development of self-reactive 

lymphocytes and therefore prevent autoimmunity.  In the absence of BCR binding, 

genetic rearrangement ceases at this stage, and the immature B cell can be released 

into the periphery. 

     The bone marrow contains specialized stromal cells to interact with developing B 

cells in order to provide signals for growth by binding directly to the B cells, and by 

secreting growth factors into the bone marrow milieu (191).  B cells in their early stages 

of development rely on stem-cell factor (SCF), which interacts with c-kit, a tyrosine 

kinase receptor on the surface of the B cell precursor.  Another molecule on the surface 

of stromal cells, VCAM-1, serves as an adhesion molecule that binds to VLA-4 on the 

surface of early B lineage cells in order to promote the binding of c-kit to SCF (192).  B 

cells in later stages of development require IL-7, a cytokine that is produced by stromal 

cells to govern the proliferative burst seen in the early pre-B cell stage, discussed below 

(193). 

 

B lineage classification 
     Classification of B-lineage cells has been made on the basis of cell-surface proteins, 

including immunoglobulin heavy and light chains, and other molecules that delineate 

these cell types.  Common lymphoid progenitors, derived from pluripotent stem cells 

that have not yet differentiated into B-lineage cells, already express the IL-7 receptor α 

chain and c-kit (194).   The earliest B-lineage cells are known as pre-pro B cells and are 

defined by the appearance of the B220 isoform of CD45 (195).  These cells can be 

identified by the lack of CD19 expression, which characterizes all later B-lineage stages 

(195).  Rearrangement of the immunoglobulin heavy chain locus begins during this pre-

pro-B cell stage.  B220, a tyrosine phosphatase that is involved in BCR signaling, is 

expressed until B cells terminally differentiate into plasma cells (178).  Initial CD19 

expression marks transition to the pro-B cell stage (178).  The heavy chain is also being 

formed here, with RAG-1 and RAG-2 expression remaining high. 

     Productive intact heavy chain expression marks the transition to the pre-B cells 

stages.  The pre-BCR is expressed (albeit mostly intracellularly) in the early pre-B cell 

stage, which halts heavy chain gene rearrangement.  RAG-1 and RAG-2 down-regulate 
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here, and the cells then divide several times in a proliferative burst under the influence 

of IL-7, becoming late pre-B cells.  The loss of CD43 expression, the adhesion molecule 

that has been present since the progenitor stages, marks the transition into this next 

stage (178).  The light chain genes then begin to rearrange in late pre-B cells (with the 

reemergence of RAG-1 and RAG-2).  Once the light chain is fully assembled and the 

complete IgM molecule is expressed on the cell surface, the cell is termed an immature 

B cell (178). 

     Other cell-surface molecules on pre-B cells include BP-1, an aminopeptidase, and 

heat stable antigen (HSA).  The function BP-1 in the context of B cell maturation is 

unknown, but its presence allows researchers to identify and isolate the different B-

lineage subsets.  HSA has been demonstrated to aid in cell to cell adhesion (196).  BP-

1- and HSA-deficient mice phenotypically display no B cell abnormalities, including 

number or immunologic functions (197, 198).  The surface expression of these markers, 

along with developmental processes occurring at each B-lineage stage is summarized 

in Figure 1.1.  Immature B cells will then undergo negative selection for self-tolerance, 

and will leave the bone marrow, and further their development into mature B cells in 

secondary lymphoid tissues.  They are considered naïve until they encounter foreign 

antigen and become activated. 

     ZDV and SMX-TMP exposure alters the progression of B-lineage cells through these 

stages.  We will demonstrate that specific points in development are targeted for 

apoptosis as a result.  This targeting of cells in sequential stages of development 

ultimately becomes one hypothesis for apoptotic synergy. 

 

 

E.  PROJECT OVERVIEW 
 

     The immune response to HIV is complex, and many factors contribute to the success 

in controlling not only HIV, but OI that afflict this patient population.  Adaptive immunity 

carries a large burden in protecting hosts exposed to opportunistic and other pathogens.  

Assault on the bone marrow in these patients is multifactorial.  While drug therapy has 

been extremely effective in allowing patients infected with HIV to live longer and  
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Figure 1.1  Stages of B-lineage development.  The cell surface proteins B220, CD43, 
HSA, and BP-1 can be used to phenotype B-lineage cells via flow cytometry.  RAG-1 
and RAG-2 expression are up-regulated for heavy- and light-chain gene rearrangement, 
and down-regulated for the proliferative burst in the early pre-B cell stage.  The BCR is 
then expressed on the cell surface (IgM) in immature B cells.  CLP, common lymphoid 
progenitor.  Adapted from Hardy et. al., 1990 (199). 
 

 

healthier lives, clinicians and researchers must consider that these drugs also alter the 

number and function of immune cell populations, and can have a negative impact on the 

treatment of this complex disease state.  Patients should be treated cautiously with 

many of these drug combinations, and any hematological abnormalities identified 

should be investigated as potential iatrogenic reactions to agents being used. 

     To this end, we investigated this drug-drug interaction concerning concurrent 

exposure of ZDV and SMX-TMP.  We first began in a mouse dosing model to verify the 

findings of others concerning peripheral immune cell effects, and then we focused on 

the bone marrow as a target of this toxicity.  This investigation led us to a study of the 

mechanisms at work in the bone marrow, focusing on B-lineage cell subtypes.  Because 

these drugs in combination were rendering cells in the bone marrow apoptotic, we then 

investigated the mechanism of apoptosis induction in a series of in vitro experiments. 

CLP         Pre-pro-B        Pro-B        Early pre-B   Late pre-B   Immature B

B220

CD43

HSA

BP-1

IL-7Ra

RAG -1/2

Feature H-chain Pre-BCR Proliferation L-chain IgM 
expressed

CLP         Pre-pro-B        Pro-B        Early pre-B   Late pre-B   Immature B

B220

CD43

HSA

BP-1

IL-7Ra

RAG -1/2

Feature H-chain Pre-BCR Proliferation L-chain IgM 
expressed

B220

CD43

HSA

BP-1

IL-7Ra

RAG -1/2

Feature H-chain Pre-BCR Proliferation L-chain IgM 
expressed



www.manaraa.com

 22

     Next we determined that this toxicity has an adverse affect on host defense by 

examining the immune response in mice challenged with a pulmonary infection  

with Pneumocystis murina after being dosed with ZDV plus SMX-TMP.  Because the 

responses in the mice treated with the drug combination were altered, we conducted a 

human trial to determine the clinical significance of combining ZDV with SMX-TMP 

treatment in patients infected with HIV.  The humoral response to the yearly influenza 

vaccine was measured in patients receiving ZDV, SMX-TMP, the combination of both, 

or neither drug.  Data presented suggests a clinically-significant impact on host 

response due to exposure to ZDV plus SMX-TMP. 
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CHAPTER 2:  Combination exposure to ZDV and SMX-TMP in normal mice 
 
 
A.  OVERVIEW 
 

     Our investigation of the toxic effects of combination exposure to ZDV and SMX-TMP 

in mice began with a characterization of cellular toxicity in the spleen, peripheral blood, 

and pulmonary tissues to confirm the results of others, and with an in-depth 

investigation of the effects on bone marrow cell populations in these animals (1).  

Phenotypic analyses of cell types including neutrophils, monocytes, and T and B 

lymphocytes in peripheral lymphoid tissues formed the basis of further study directed 

toward the bone marrow.  Because cell types that mature in the bone marrow were 

most affected, we sought to characterize bone marrow cell population dynamics, as well 

as to elicit the mechanism of the toxicity, focusing on B lymphocytes. 

     We hypothesized in Chapter 1 that the site of immunotoxicity in mice as a result of 

ZDV plus SMX-TMP exposure is the bone marrow.  We sought to demonstrate that the 

mode of cell death (apoptotic versus necrotic) as a result of exposure to ZDV plus SMX-

TMP.  We then characterized the kinetics of this toxicity in B lineage cell populations as 

they evolve through the different checkpoints on the way to becoming mature B cells.  

To explain the mechanism of cell death, we then demonstrated that the effect is cell-

cycle specific, primarily affecting early pre-B cells as they undergo the proliferative burst 

into the late pre-B cell phenotype. 

 
 
B.  MATERIALS AND METHODS 
 
Materials 
     ZDV (3’-azido-3-deoxythymidine), trimethoprim (2,4-diamino-5-[3,4,5-trimethoxy-

benzyl]pyrimidine), SMX (4-amino-N-[5-methyl-3-isoxazolyl]benzenesulfonamide), 

methylcellulose, sodium azide, DMSO, PBS, ammonium chloride, potassium 

bicarbonate, EDTA, collagenase A, DNase, caffeine, acetonitrile, acetic acid, 
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triethylamine, and RNase A were obtained from Sigma-Aldrich (St. Louis, MO).  

Monoclonal Abs, including FITC-conjugated GR-1, IgD, and BP-1, PE-conjugated CD19 

and CD43, APC-conjugated CD11b, B220, and CD8, PE-cyanine-conjugated CD4, and 

biotinylated CD43 and heat stable antigen (HSA), were obtained from BD Pharmingen 

(San Diego, CA).  Annexin V-FITC/propidium iodide (PI) apoptosis detection kit (BD 

Pharmingen) was utilized for identifying cells undergoing early stages of apoptosis.  

RPMI Medium 1640, HBSS, and FCS were purchased from Gibco Invitrogen 

Corporation, Grand Island, NY.  

 
Animals 
     Four- to six-week old normal BALB/c mice were obtained from the National Cancer 

Institute (Raleigh, NC) and isolated for at least 7 days before manipulation.  Mice were 

housed in the Veterans Administration Veterinary Medical Unit under pathogen free 

conditions with a 12 hour light/dark photocycle and food and water both freely available.  

This study and all of its procedures were approved by the Veterans Administration 

Institutional Animal Care and Use Committee. 

 

Drug preparation and dosing design 
     Drug doses were prepared daily by weighing each powder into polypropylene tubes, 

SMX and TMP together, and ZDV separately, and suspending each in its appropriate 

vehicle:  ZDV dissolved into sterile-filtered deionized H20 to a concentration of 50mg/ml, 

SMX and ZDV suspended in 0.5% methylcellulose in H20 at concentrations of 106mg/ml 

and 8mg/ml, respectively.  Mice were randomized into four treatment groups, either 

receiving ZDV or SMX-TMP alone, in combination, or vehicle only (control), at the 

following doses based on an approximate mean mouse weight of 20 grams:  ZDV 

240mg/kg (5mg per mouse in 100µl), SMX 840mg/kg (16mg per mouse in 150µl), and 

TMP 160mg/kg (1.2mg per mouse).  Doses were given via oral gavage with an 18-

gauge blunt-tipped dosing needle, and mice received each drug or its corresponding 

vehicle daily. 
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Tissue processing 
     Spleens were collected in RPMI-1640 supplemented with 5% FCS, weighed, and 

pushed through mesh screens to obtain single cell suspensions.  Lungs were minced 

and digested by incubation with 50 U/ml DNase and 1mg/ml collagenase A and pushed 

through mesh to form single cell suspensions.  Peripheral blood specimens were 

collected from the abdominal aorta and placed in heparinized tubes to prevent clotting.  

Blood was also collected separately in dry tubes, allowed to clot, and serum was 

separated by centrifugation and frozen at -800C until time of SMX concentration 

analysis.  Bone marrow was flushed from femurs and tibias into RPMI-1640 plus 5% 

FCS, and single cell suspensions were obtained via passage through a 25-gauge 

needle.  Red cells in all samples were lysed with hypotonic buffer consisting of 0.15M 

ammonium chloride, 10mM potassium bicarbonate, and 0.1mM EDTA.  Cells were then 

washed, enumerated, and transferred into 5ml round-bottom polystyrene tubes for 

phenotyping via flow cytometry. 

 

Cell phenotyping 
     Splenocytes and lung digest cells were incubated with fluorescently-labeled mAb 

specific for murine cell surface markers, including major histocompatibility complex II 

(MHC II), CD19, CD4, and CD8.  Bone marrow cells were incubated with 3 separate 

panels of Abs to phenotype B lineage cell types in addition to polymorphonuclear cells 

(PMN).  Panel 1 consisted of CD19, granulocyte differentiation antigen (GR-1), and 

CD11b (component of Mac-1); panel 2 of B220, CD43, BP-1, and HSA; panel 3 of 

B220, CD43, and IgM.  B lineage cells were classified according to nomenclature 

developed by Hardy et al (178).  Cells were washed before and after staining with PBS 

containing 0.1% BSA and 0.02% sodium azide.  All cells were analyzed for phenotype 

by flow cytometric multiparameter analysis using a FACSCaliber Flow Cytometer (BD 

Biosciences, Mountain View, CA).  Greater than 50 thousand events per sample were 

routinely examined. 
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Apoptosis analysis 
     The proportion of apoptotic cells was quantified using the annexin-V binding protocol 

with PI exclusion.  Annexin binds to phosphatidylserine groups that are externalized on 

the cell membrane in early stages of apoptosis (59).  Samples were analyzed by flow 

cytometry as above, and cells that fluoresced annexin-V positive/PI negative were 

considered apoptotic. 

 

Cell cycle analysis 
     Individual B cell subpopulations were fluorescently labeled as above and sorted 

using fluorescence-activated cell sorting (FACS) with a MoFlo high speed cell sorter 

and analyzer from Cytomation (Fort Collins, CO).  Subpopulations were then fixed using 

95% ethanol, and stored at -200C.  Cell cycle analysis was performed by labeling DNA 

with PI at 50µg/ml in the presence of 50µg/ml RNase A.  A FACSCaliber flow cytometer 

was used to analyze cell cycle stages with doublet discrimination, using the ModFit 

software package (Verity Software House, Inc, Topsham, Maine). 

 

Statistical Analysis 
     Data was compared using one-way ANOVA followed by the Student-Neuman-Keul 

test for ad hoc pair-wise comparisons.  Each treatment group was compared to its 

corresponding control using commercially available software (Sigmastat, SPSS, 

Chicago, IL).  Data that failed normality testing was compared using the Kruskal-Wallis 

One Way Analysis of Variance on Ranks method.  Results were determined to be 

statistically significant when a p-value < 0.05 was obtained.  Data are expressed as the 

mean ± standard deviation. 

 
 
C. RESULTS 
 
Combination dosing has an overall clinical effect on mice 
     Mice were dosed with ZDV, SMX-TMP, ZDV plus SMX-TMP, or vehicle only for a 

period of 28 days.  Doses were chosen based on previous studies that produced 
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significant levels of toxicity.  Daily oral gavage of ZDV plus SMX-TMP led to an increase 

in lethargy, failure to groom, and a hunched appearance by day 28, though no mortality 

occurred.  Mice in this group displayed a decrease in body weight after 28 days of 

dosing, whereas the ZDV, SMX-TMP, and control groups all gained weight (Table 2.1).  

Spleen weights and spleen weight expressed as a percentage of body weight were 

reduced in the combination group compared to the control group, with each single-drug 

treatment cohort again displaying no difference (Table 2.1).  Other organs in the 

peritoneum did not display any gross changes upon examination. 

 

Table 2.1  Body and spleen weights. 

 Mouse weight (grams) Spleen weight (Day 28) 

Mouse Group Day 0A Day 28 Change Grams Percent 
body weight 

ZDV 18.73 ± 1.50 19.42 ± 1.41 0.68 ± 0.77 0.078 ± 0.027 0.40 ± 0.14 

SMX-TMP 18.43 ± 0.70 20.64 ± 1.06 2.12 ± 0.37 0.086 ± 0.009 0.42 ± 0.03 

ZDV + SMX-TMP 17.99 ± 0.49   17.16 ± 1.26B  -0.83 ± 1.28B 0.040 ± 0.008B   0.23 ± 0.04B 

Control 18.39 ± 1.42 20.28 ± 1.37 1.89 ± 0.73 0.090 ± 0.012 0.44 ± 0.06 

p-value 0.816 0.005 0.001 0.002 0.016 
      AData expressed as mean ± SD of 5 mice per group. 
      Bp < 0.05 compared to control group. 
 

 
B lymphocyte and granulocyte populations are decreased by ZDV plus SMX-TMP 
treatment, primarily in the bone marrow and spleen 
     We conducted a phenotypic analysis of immune cell populations in the spleen, lungs, 

and bone marrow of mice treated with the drug combination.  Splenic cellularity 

decreased 49% in the ZDV plus SMX-TMP group after 28 days of therapy as compared 

to control, whereas the ZDV and SMX-TMP groups were not significantly affected 

(Figure 2.1A).  The cell types that accounted for this decrease were the splenic 

monocytes and B lymphocytes in the ZDV plus SMX-TMP group, as shown in Figure 

2.1B.  No differences were observed in splenic CD4+ and CD8+ T cell numbers.  

Peripheral blood lymphocyte percentages were not significantly affected at any 

timepoint examined, with data shown for mice after10 days of drug exposure 
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Figure 2.1  Effects of drug dosing on immune cell populations.  Mice were treated with 
either ZDV, SMX-TMP, ZDV plus SMX-TMP, or vehicle only control.  Spleen, peripheral 
blood, and lung digests were processed into single-cell suspensions and phenotyped by 
flow cytometry.  Panels consist of: (A) total splenocytes isolated from mice in each 
group after 28 days dosing; (B) CD4+ and CD8+ T cells, monocytes (MHC II+ on non-
lymphocyte gate) and CD19+ B cells in  spleens; (C) percentages of CD4+, CD8+, and 
CD19+ cells in peripheral blood after 10 days of dosing; and (D) CD4+ and CD8+ T cells, 
macrophages (MHC II+ on non-lymphocyte gate) and CD19+ B cells in lung digests after 
28 days drug exposure.  Data represent the mean ± SD of 4 mice per group and are 
representative of 3 separate experiments.  Significant differences from control group (*) 
were defined at an alpha level of < 0.05. 
 

 

(Figure 2.1C).  Lung digest cell populations (Figure 2.1D) displayed no differences in 

total cell number or in any subpopulation of cells quantified. 

     There were significant decreases in all cell lineages examined in the bone marrow in 

mice receiving combination exposure, including total cells, B lymphocytes, and PMN 

(Figure 2.2A).  There was a dramatic decrease in bone marrow cellularity at all 

timepoints in the ZDV plus SMX-TMP group as compared to the control group (Figure 

2.2B).  Bone marrow B cells (B220+) are depicted in Figure 2.2C, demonstrating that 

they follow the same pattern of depletion over time as the total bone marrow cell 
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Figure 2.2  Effects of drug dosing on bone marrow B cell populations.  Mice were 
treated with either ZDV, SMX-TMP, ZDV plus SMX-TMP, or vehicle only control.  Bone 
marrow cells were isolated from femurs and tibias of mice and processed into single cell 
suspensions after RBC lysis.  Panel A depicts total cell, PMN (GR-1+/CD11b+), and B 
cell (B220+) populations in the bone marrow after 28 days of dosing.  The next panels 
show the kinetics of the depletion of total cells (B) and B220+ B cells (C) over time up to 
day 28 of drug exposure.  Data represent the mean ± SD of 4 mice per group and are 
representative of 3 separate experiments.  Significant differences from control group (*) 
were defined at an alpha level of < 0.05. 
 
 
populations.  Notably, treatment with either drug alone had no statistically significant 

effect on any cell populations in the bone marrow, spleen, or lung digest at any 

timepoints examined (Figures 2.1 and 2.2). 

 
B lineage subtypes in the bone marrow are affected primarily at the late pre-B cell 
stage 
     B cell development proceeds through discreet stages, allowing us to determine in 

vivo toxic effects of ZDV plus SMX-TMP on B cell maturation.  Phenotypic analysis via 

flow cytometry according to the scheme developed by Hardy et al, 1991 is depicted in 
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Figure 2.3 (178).  When expressed as percentages, large deviations in B lineage cells 

were not observed, with the exception of late pre-B cells (Figure 2.3B).  Representative 

histograms from flow cytometry analysis show the absence of late pre-B cells in a 

mouse dosed with ZDV plus SMX-TMP (Panel A, region c, 0.6% of the total bone 

marrow) compared to a control mouse (Panel B, 6.6% of the total bone marrow). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3  Phenotypic staining of B cell precursors by flow cytometry.  Bone marrow 
from mice treated with ZDV plus SMX-TMP for 9 days (A) are compared to bone 
marrow from control mice (B).  Cells were gated on lymphocyte populations and stained 
for B220 and CD43 (middle panels).  Lymphocytes in gate a (B220+/CD43-) in the 
middle panels were stained for IgM (left panels) to determine late pre-B cell percentage 
shown in box c (B220+/CD43-/IgM-).  B220+/CD43+ cells (gate b) were then analyzed for 
HSA vs. BP-1 (right panels).  Pre-pro-B cells are shown in box d (B220+/CD43+/HSA-

/BP-1-), pro-B cells in box e (B220+/CD43+/HSAlow), and early pre-B cells in box f 
(B220+/CD43+/ HSAhigh/BP-1+). 
 

 

     Absolute cell numbers of B-lineage subtypes are shown in Figure 2.4.  Differences 

observed were in large part due to differences in overall bone marrow cell counts, and 

not alterations in percentages of each cell type (as described above).  There was a 
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significant decrease in pre-pro-B cells (B220+/CD43+/BP-1-/HSA-) compared to the 

control group after 21 days of combination dosing (Figure 2.4A).  In the single drug 

treatment groups, decreases in number of pre-pro-B cells were seen at day 28, similar 

to those seen in the combination treatment mice (Figure 2.4A).  The pro-B cell fraction  

(B220+/CD43+/HSAlow) displayed similar kinetics, with a significant decrease in cell 

number in the combination group occurring at the 21- and 28-day timepoints (Figure 

2.4B).  Pro-B cell numbers were also significantly decreased in the ZDV group at day 21 

and the SMX-TMP group at day 28. 

     The early pre-B cell population (B220+/CD43+/BP-1+/HSA+) was approximately three 

times greater in number at day 7 in the ZDV plus SMX-TMP treated mice compared to 

the control animals (Figure 2.4C).  By day 28, however, this population fell 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4  Kinetics of B lineage subsets at weekly timepoints.  Mice were treated with 
either ZDV, SMX-TMP, ZDV plus SMX-TMP, or vehicle only control, and sacrificed at 
weekly time intervals.  B220+ B cells were phenotyped for surface marker profiles using 
flow cytometry as shown in Figure 3.  Cell fractions were enumerated in developmental 
sequence, including pre-pro-B (A), pro-B (B), early pre-B (C), and late pre-B cells (D).  
Bars represent the mean ± SD of 4 mice per group per timepoint.  Significant difference 
to control group (*) was defined at an alpha level of < 0.05. 
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significantly as compared to the control group.  Interestingly, the rise in early pre-B cells 

corresponded to a decrease in the late pre-B cell (B220+/CD43-/IgM-) fraction on day 7.  

Late pre-B cell numbers were dramatically lower on the later 3 timepoints in the 

combination treatment group (Figure 2.4D).  The increase in cell numbers among the 

late pre-B cell fraction in comparison to the other B cell subtypes corresponds to the 

proliferative burst seen as they mature from the early pre-B cell stage to the late pre-B 

cell stage of development under the influence of IL-7.  This proliferative burst was 

absent in the ZDV plus SMX-TMP group at days 15, 21, and 28 of therapy (Figure 2.4C 

and 2.4D). 

 

The mode of cell death is apoptosis 
     To gain insight into the mechanism of bone marrow cell depletion, the percentage of 

cells undergoing apoptosis was determined by identifying cells that were bound to 

annexin V but stained negative for PI.  There was a significant increase in percentage of 

total cells that stained annexin +/PI- in the ZDV plus SMX-TMP group at each timepoint 

examined (Figure 2.5A).  The combination of drugs caused a significant increase in 

apoptotic cells in both the non-lymphocyte and B lineage populations.  Statistically 

significant increases were observed at each timepoint for percentages of non-

lymphocytes (identified via a non-lymphocyte gate) undergoing apoptosis in the 

combination treatment group (Figure 2.5B).  Percentages of total B cells (B220+) 

undergoing apoptosis were significantly increased at the 7-, 15-, and 28-day timepoints 

in the ZDV plus SMX-TMP group, with a trend toward significance at day 21 (p=0.07) as 

shown in Figure 2.5C. 

     Pro-B (B220+/CD43+) and pre-B (B220+/CD43-) cell subpopulations were examined 

for induction of apoptosis.  Percentages of apoptotic pro-B cells were increased at the 

15-, 21-, and 28-day timepoints, more than doubling in each instance in the ZDV plus 

SMX-TMP group as compared to the group receiving vehicle (Figure 2.5D).  The 

percentage of pre-B cells undergoing apoptosis was significantly increased at days 7, 

15, and 28 in the combination treatment group, again at more than twice the apoptosis 

rate as the control group (Figure 2.5E).  There were no differences in percentage of B-
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lineage cells undergoing apoptosis in either of the single drug treatment groups as 

compared to the control group (Figure 2.5).  Additionally, we have also demonstrated 

this effect from the drug combination in FVB/N mice, to confirm that the toxicity is not 

strain-specific to BALB/c mice.  This data is shown in Chapter 3 (Figure 3.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5  Percentages of apoptotic cells at weekly timepoints of drug dosing.  Mice 
dosed with ZDV, SMX-TMP, ZDV plus SMX-TMP, or vehicle only control were sacrificed 
at weekly timepoints and the bone marrow aspirates were assayed for cells undergoing 
apoptosis.  Cells that labeled annexin-V positive, PI negative were deemed apoptotic.  
Percentages of total cells (A), non-lymphocytes (B), B lymphocytes (C), pro-B cells (D), 
and pre-B cells (E) are shown.  Data represents the mean ± SD and are representative 
of 3 separate experiments.  Significant differences (*) from control group were 
determined at an alpha level of <0.05. 
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Long-term, low-dose exposure did not affect the bone marrow 
     To determine the long-term affect of ZDV plus SMX-TMP on the bone marrow, mice 

were dosed with ZDV, SMX-TMP, the combination of both, or vehicle only control as 

described previously.  Dosing was altered for this experiment however, in that the doses 

were reduced 8-fold, to ZDV 30mg/kg, SMX 105mg/kg, and TMP 20mg/kg, and the 

dosing duration was extended to 55 days.  These doses were chosen because of 

preliminary data that demonstrated a low level of bone marrow toxicity at these 

quantities over a dosing period of 14 days.  Figures 2.6A and 2.6B show that total cells  
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Figure 2.6  Long-term dosing effect on bone marrow total and B cells.  Mice were 
dosed with ZDV, SMX-TMP, the combination of both, or vehicle only control as 
described in Materials and Methods.  Dose was reduced however to ZDV 30mg/kg, 
SMX 105mg/kg, and TMP 20mg/kg, and the dosing duration was extended to 55 days.  
Panels A and B depict percentages of total cells (A) and B220+ B cells (B) harvested 
that were dead (annexin-V positive, PI positive) or apoptotic (annexin-V positive, PI 
negative).  Panel C represents mean final mouse weights on day 55 of dosing.  Panel D 
shows the total cell counts in the bone marrow at the time of harvest.  Data represents 
the mean ± SD and are representative of 1 experiment only.  Significant differences (*) 
from control group were determined at an alpha level of <0.05. 
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(A) and B220+ B cells (B) were not affected after exposing the mice to low levels of drug 

for 55 days.  Dead (annexin-V positive, PI positive) and apoptotic (annexin-V positive, 

PI negative) cell percentages were unaffected in the combination dosing group 

compared to the control group.  Interestingly, dead and apoptotic B cell percentages in 

the SMX-TMP group were significantly reduced.  Panel C represents the mean final 

mouse weights on day 55 of dosing, which were not affected by SMX-TMP or ZDV.  

Panel D shows the total cell counts in the bone marrow at the time of harvest, which 

also displayed no statistically-significant differences in the treatment groups compared 

to control.  

 

The toxicity to B lineage subpopulations is cell-cycle specific 
     We have demonstrated that the transition from the early pre-B to the late pre-B cell 

stage appears to be affected by the drug combination, as evidenced by an accumulation 

of early pre-B cells followed by depletion of late pre-B cells at day 7 of drug exposure.  

To determine whether this was due to cell cycle arrest, mice from the four treatment 

groups were sacrificed after 6 and 9 days of dosing for bone marrow harvest and cell 

cycle analysis.  Bone marrow was pooled from each group, and sorted by flow 

cytometry into pre-pro-B, pro-B, early pre-B, and late pre-B cell subsets.  Cells were 

fixed and stained with PI for cell cycle analysis on the sorted samples.  Samples were 

pooled to acquire enough events for analysis after sorting because some subtypes exist 

at very small percentages of the total bone marrow. 

     Representative cell cycle histograms are shown in Figure 2.7 to illustrate the marked 

accumulation of cells in the S and G2/M phases of the cell cycle as a result of dual drug 

treatment.  Mice treated with ZDV plus SMX-TMP displayed an increased proportion of 

early pre-B cells in S phase and G2/M phases compared to the control mice after 6 and 

9 days of treatment (Fig 2.7A-C).  Panels D through F show late pre-B cells, which had 

an overall proliferation rate that is lower than that of early pre-B cells.  Combination drug 

dosing did not alter the proportion of S phase late pre-B cells to a large degree, 

however there was an upward trend compared to the control group (Figure 2.7D-F). 

     The fraction of cells in S phase and G2/M phases for all groups are shown in Figure 

2.8.  After 6 days of dosing, the proportion of pre-pro-B, pro-B, and early pre-B cells in 
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Figure 2.7  Bone marrow B lymphocyte cell cycle histograms.  Bone marrow samples 
were analyzed for cell cycle profile by measuring PI intercalation into DNA (expressed 
as fluorescence intensity) on day 6 and day 9 of dosing with ZDV, SMX-TMP, ZDV plus 
SMX-TMP, or vehicle only.  B220+ cells from bone marrow were phenotyped by surface 
markers and sorted via flow cytometry prior to cell cycle analysis.  The panels on the left 
depict the cell cycle profiles in the early pre-B cell populations from mice treated with 
the combination of ZDV and SMX-TMP on day 6 (B), and day 9 (C), as compared to 
control mice (A).  The panels on the right depict late pre-B cells in the control group (D) 
and the ZDV plus SMX-TMP group at day 6 (E) and day 9 (F) of dosing.  The 
proportions of cells in the different phases of the cell cycle are shown on each panel. 
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the S and G2/M phases were higher in the combination drug treatment group than in the 

other groups (panels A and B).  This proliferative burst is exaggerated on day 6 of 

dosing in the combination group.  However, by day 9, the percentage of cells in S phase 

and G2/M phases show no obvious differences in any of the B lineage subsets (panels 

C and D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8  Cell cycle analysis.  Cell cycle analysis experiments were performed by 
sorting B lineage subpopulations into pre-pro-B, pro-B, early pre-B, and late pre-B cell 
fractions by FACS as per Figure 5.  Bone marrow from mice treated with ZDV, SMX-
TMP, ZDV plus SMX-TMP, or vehicle was pooled together (3 mice per group) and 
sorted after 6 and 9 days of dosing.  Cell cycle analysis was performed using PI 
intercalation and FACS.  The percentage of each subpopulation in each stage of the cell 
cycle is reported.  Panels A and B depict percentages of B lineage cells from mice 
treated for 6 days that are in S phase and G2/M phases, respectively.  Panels C and D 
show the percentage of cells in S phase and G2/M phases from mice treated with the 
drugs for 9 days.  Data are representative of 2 separate experiments. 
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D.  CONCLUSIONS 
 

     We have demonstrated the toxic effects of the combination of ZDV and SMX-TMP 

on B cell development in a mouse model.  Bone marrow cells in mice treated with the 

drug combination had a significantly higher incidence of apoptosis and the combination 

of drugs appears to affect the proliferative burst as B lineage cells multiply in the pre-B 

cell stage of development.  Interestingly, we consistently found a temporal relationship 

between drug administration and stage of which B cell development was compromised. 

     We observed a significant increase in early pre-B cells at the IL-7-dependent 

proliferative burst at day 7 of drug treatment.  However, there was a marked decrease in 

the numbers of cells in the late pre-B cell fraction, suggesting that ZDV plus SMX-TMP 

treatment blocked transition into this stage.  The cell cycle data presented in Figure 2.7 

shows an increased percentage of cells in the S and G2/M phases in the combination 

group, which could be indicative of either cell cycle arrest or increased proliferation.  

Taken together with the data demonstrating cellular depletion and apoptosis, we 

conclude that it is indicative of arrest. 

     In subsequent timepoints, this increased pre-B cell population is abolished, and cells 

in the earlier stages of development (pro-B) are decreased.  It appears that over time, 

the toxicity of ZDV plus SMX-TMP causes fewer cells to reach the pre-B cell stage 

resulting in a depletion at this stage.  Of note, after dosing for 28 days, proportions of 

pre-pro-B and pro-B cells were significantly reduced in each single drug treatment 

group; however, the total bone marrow B lymphocyte population in these mice was not 

significantly affected suggesting that the presence of the drugs in combination is 

required to block the IL-7 dependent pre-B cell expansion.  Our data demonstrate that 

the cell type most affected is that which is undergoing the most cell division; this is 

consistent with the known propensity of ZDV and SMX-TMP to affect DNA replication 

during the S phase. 

     To further these investigations, we have expanded these studies in two ways.  First, 

we describe the characteristics of this toxic effect in a series of in vitro experiments, as 

we analyze the apoptotic mechanism in these cells that are affected by the drugs.  

Secondly, we investigate in mice the affect of this drug-drug interaction on the host’s 
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ability to respond to an infectious agent.  These studies will ultimately lead to the human 

trial that exposes the clinical significance of this toxicity, which will be presented in 

Chapter 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © David James Feola 2005 
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CHAPTER 3:  Mechanistic investigation of toxicity to B lymphocytes due to ZDV 
plus SMX-TMP exposure 
 
 
A.  OVERVIEW 
 

     In the previous chapter, we have characterized the effects of combination exposure 

to ZDV and SMX-TMP in mice.  Because this toxicity affects cells that originate and 

mature in the bone marrow, we have focused our studies to this tissue to demonstrate 

that cells are being induced to undergo a higher rate of apoptosis when exposed to both 

drugs.  B-lineage cells are primarily affected at the proliferative burst when transitioning 

from the early pre-B cell stage to the late pre-B cell phenotype; however, in addition, 

fewer progenitors are reaching this stage of development.  In this chapter we now report 

a series of in vitro experiments designed to further characterize the toxicity of ZDV plus 

SMX-TMP exposure, along with additional in vivo assessments to investigate the 

mechanism of enhanced apoptosis in B lymphocytes. 

     While there is little in the literature addressing the toxicity of these agents in 

combination, the cytotoxic effects of both SMX-TMP and ZDV individually have been 

extensively studied.  Several groups have shown that ZDV affects lymphocytes in their 

early stages of development in the bone marrow (107-109).  The monophosphorylated 

form is responsible for its toxicity by inhibiting thymidylate kinase and lowering 

intracellular thymidine pools, as discussed in Chapter 1 (107).  This toxicity is 

associated with an inhibition of hematopoietic progenitors in murine and human bone 

marrow (108, 109).  ZDV induces apoptosis in immune cell populations by this inhibition 

of DNA synthesis, having the greatest impact on cell types that are actively cycling (111, 

112).  ZDV monophosphate also induces mitochondrial dysfunction in hematological 

cells due to inhibition of mitochondrial DNA polymerase gamma (113-116).  This 

mechanism of toxicity also plays a role in apoptosis induction, as it is thought that ZDV 

makes cells more susceptible to apoptosis by inducing mitochondrial membrane 

hyperpolarization (112, 117). 
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     Effects of SMX-TMP on bone marrow cell populations have been well studied.  The 

toxicity has been attributed to the oxidative metabolites of SMX, sulfamethoxazole-

hydroxylamine (SMX-HA) and nitroso-sulfamethoxazole (SMX-NO), based on in vitro 

data (152).  Incubation of neutrophils and lymphocytes with the parent compound SMX 

caused little or no toxicity, while cytotoxic effects were demonstrated with SMX-NO and 

SMX-HA exposure, including cellular haptenation, direct cellular cytotoxicity, and, of 

importance to this dissertation, apoptosis induction (152).  The cellular haptenation of 

SMX-HA has been shown to induce a population of SMX-HA-specific T cell clones that 

are implicated in SMX hypersensitivity (200).  Anti-SMX antibodies have also been 

found in the serum of HIV-infected patients being treated with the drug (201).  These 

data are indicative of an immune pathogenesis for the toxicity associated with the drug, 

along with direct cytotoxic effects observed with the metabolites. 

     A higher than normal incidence of adverse reactions is associated with the use of 

SMX-TMP in patients with AIDS (149-151).  Virus-induced GSH depletion has become 

the leading hypothesis for the mechanism of this phenomenon.  Patients with HIV 

infection have depleted intracellular GSH concentrations, a molecule responsible for the 

conversion of SMX-HA and SMX-NO back to the parent compound , which is then 

metabolized to non-toxic species and eliminated (153, 154, Cribb #89, 156).  

Investigators have linked this depletion of GSH by the virus to SMX-TMP intolerance in 

HIV-infected patients (153, 154).  Naisbitt et. al. confirmed this hypothesis by 

demonstrating in vitro that the addition of GSH to cultured lymphocytes decreases SMX-

HA- and SMX-NO-induced cellular toxicity (202). 

     Additionally, in vitro studies have shown that GSH inhibits SMX-NO haptenation to 

lymphocytes and neutrophils, and the CD4+ T cell response to SMX-HA haptenation in 

this setting is also decreased (152, 200).  Cysteine, another molecule capable of 

reducing these metabolites has been demonstrated to be protective of these effects as 

well (152).  Although GSH depletion has not been linked to an increase in SMX 

metabolite concentrations in a clinical setting, this could explain the increased rate of 

toxicity seen with the use of SMX-TMP in patients with AIDS.  Figure 3.1 represents the 

intracellular metabolic pathways of SMX, and the roles of oxidation and reduction that 

lead to its elimination.  The parent is oxidized to SMX-HA by intracellular cytochrome 
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P450 isoenzyme 2C9 (CYP2C9), which is further oxidized spontaneously to SMX-NO.  

GSH (as well as other reducing agents) detoxify the compound back to the parent SMX, 

which can be glucuronidated by the liver into hydrophilic species that are eliminated 

(156, 203). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1  Intracellular metabolism of SMX.  SMX is oxidized to the bioactive SMX-HA 
by CYP2C9, and oxidized further spontaneously to SMX-NO.  GSH, through a series of 
reduction steps, converts the molecule back to the parent compound (or via CYP/NAPH 
reductase) to be metabolized in the liver to glucuronidated intermediates and 
eliminated.  Adapted from Gill et al, 1996 (204).  R=SO2-NH-C3HNO-CH3 
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reverse transcriptase inhibitors (205, 206).  ZDV is also a known substrate of this 

transporter, and has also been recently shown to induce its up-regulation (207).  Mrp4 is 

known to be able to transport GSH from inside cells to the extracellular space, causing 

decreases in intracellular GSH pools (208).  Since GSH detoxifies SMX metabolites by 

reducing them back to the parent drug, up-regulation of Mrp4 by ZDV could lead to a 

buildup of toxic SMX metabolites.  Alternatively, since Mrp4 also transports GSH-

substrate complexes (including GSH-SMX-HA), another potential hypothesis is that by 

competitive inhibition, ZDV (also a substrate of Mrp4) decreases the amount of GSH-

SMX-HA complexes that are effluxed, thereby increasing intracellular concentrations of 

the toxic metabolite. 

     Clinical investigations into the significance of this drug interaction are difficult, due to 

the multiple additional factors that could be affecting immune response in HIV-infected 

patients.  Therefore, in addition to exploring this toxicity in an animal model, we 

investigated the toxicity of this combination of compounds on mouse bone marrow in an 

in vitro culture system.  By doing so, many questions concerning this drug interaction 

could be addressed, including dose dependency, drug disposition, and mechanism of 

apoptosis induction.  Our hypotheses were three-fold:  first, that cytotoxicity caused by 

ZDV plus SMX-TMP is concentration-dependent, synergistic, and related to oxidative 

stress; second, that apoptosis induction proceeds through signaling pathway that 

utilized caspases; and third, that the disposition of SMX is altered in mice as a result of 

concurrent ZDV treatment. 

 

 
B.  MATERIALS AND METHODS 
 
Materials 
     Many materials used in these experiments were obtained as indicated in previous 

chapters.  In addition, IL-7, dimethylsulfoxide (DMSO), 2-mercaptoethanol (2-ME), 

trypan blue, etoposide, caffeine, acetonitrile, acetic acid, and triethylamine were 

obtained from Sigma-Aldrich (St. Louis, MO).  SMX-HA and SMX-NO were synthesized 

and obtained from Dalton Chemical Laboratories (Toronto, Ontario, Canada).  The pan-
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caspase inhibitor Z-Val-Ala-DL-Asp-fluoromethylketone (Z-FAD-FMK) was purchased 

from Alexis Biochemicals (Lausen, Switzerland). 

 

BM isolation 
     Four- to six-week old normal BALB/c mice were obtained from NCI (Raleigh, NC) 

and isolated for at least 7 days before manipulation.  Mice were housed in the Veterans 

Administration (VA) Veterinary Medical Unit in sterile cages with a 12 hour light/dark 

photocycle and food and water both freely available.  This study and all of its 

procedures were approved by the VA Institutional Animal Care and Use Committee.  

Mice were sacrificed using a carbon dioxide chamber, and bone marrow was promptly 

isolated from femur and tibia bones under sterile conditions using 25-gauge needles 

into media containing RPMI-1640, 2-ME (1x10-5 M), and 5% FCS. 

 

Cell culture 
     After red cell lysis, cells were placed into 24-well culture plates at a concentration of 

1x106 cells/ml per well.  B lineage cell proliferation was stimulated by the addition of IL-7 

at a concentration of 25 units/ml.  SMX-NO, SMX-HA, and ZDV were then dissolved 

using DMSO (resultant DMSO amount never exceeding 1% in any culture well) and 

placed into cell culture at increasing concentrations, so that concentration-related 

toxicities could be analyzed.  All cultures were incubated at 370C and 5% CO2.  

Variations in culture conditions, incubation times, and additives were performed in 

respective experiments. 

 

Bone marrow phenotyping 
     Cells were analyzed for phenotype by flow cytometry by using a FACSCaliber Flow 

Cytometer (BD Biosciences, Mountain View, CA) and the WinList software package 

(Verity Software House, Topsham, ME).  BM cells were incubated with 3 separate 

panels of fluorescently-labeled antibodies to phenotype B lineage cell types using IgM, 

CD43, B220, BP-1, and HSA as described in Chapter 2.  Other experiments only 

required one surface marker labeling, either B220 or CD19, to classify B cells more 
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generally.  Cells were washed before and after staining with PBS containing 0.1% BSA 

and 0.02% sodium azide. 

 

Apoptosis assays 
     Bone marrow cells were analyzed via flow cytometry for apoptosis using the Annexin 

V-FITC/PI assay kit, utilizing the manufacturer’s instructions (BD Pharmingen, San 

Diego, CA).  Briefly, cells were washed and resuspended in annexin binding buffer and 

incubated in the presence of annexin-V-FITC and PI for 20 minutes at room 

temperature.  Cells were analyzed by flow cytometry within 1 hour. 

     Cells were also analyzed for apoptosis with the “Tunel” assay using the APO-

BRDU™ Kit (BD Pharmingen, San Diego, CA).  Treated cells were fixed in 4% 

paraformaldehyde for 1 hour.  Terminal deoxynucleotidyltransferase (TdT) enzyme was 

used to catalyze the addition of bromolated deoxyuridine triphosphate (BrdU) to the 3’-

hydroxyl termini of DNA for 60 minutes at 370C.  Cells were washed and stained with 

anti-BrdU antibody labeled with FITC, along with PI, for 30 minutes at room 

temperature.  Apoptosis and cell cycle were analyzed simultaneously by flow cytometry 

within 3 hours.  

 

Dose-effect analysis 
     To determine whether the in vitro interaction between ZDV and SMX-HA is additive 

or synergistic, the combination index method was used (209).  The concentration at 

which 50% of the effect is reached (IC50) and the slope parameter (m) for each agent 

alone and in combination (at a ratio of 1:1) were determined from the median-effect plot, 

a linear relationship plotting log(D) versus log(fa/fu) based on Chou’s median-effect 

equation: 

 

fa/fu = (D/Dm)m 

 

where D is the dose (concentration) of the drug, Dm is the IC50 as determined from the 

x-intercept of the median-effect plot, fa is the fraction of cells affected, fu is the fraction of 

cells unaffected (fu=1-fa), and m is an exponent signifying the steepness for the sigmoid 
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dose-effect curve.  A combination index (CI) was then calculated to assess synergism, 

additivity, or antagonism according to the following equation: 

 

CI = (D)1/(Dx)1 + (D)2/(Dx)2 + (D)1(D)2/(Dx)1(Dx)2 

 

where (D)1 and (D)2 are the concentrations of ZDV and SMX-HA which combined 

produce x% cytotoxicity, and (Dx)1 and (Dx)2 are the concentrations of each drug which 

alone produce x% cytotoxicity.  The equation assumes independent mechanisms of 

drug action between the agents.  CI=1 indicates an additive interaction, CI<1 indicates 

synergy between the two drugs, and CI>1 indicates antagonism (209).   

 

Apoptosis inhibition 
     The pan-caspase inhibitor Z-VAD-FMK was utilized to inhibit apoptosis associated 

with ZDV plus SMX-TMP exposure in cultured B lymphocytes.  Increasing 

concentrations of ZDV (72-hour exposure) and SMX-HA (1- to 2-hour exposure) were 

used to induce apoptosis, with Z-VAD-FMK 20μM added 15 minutes prior to SMX-HA in 

an attempt to block apoptotic mechanisms that utilize caspases.  Etoposide was used 

as a positive control to induce mitochondrial pathway apoptosis that is caspase-

dependent, through the inhibition of topoisomerase II, which causes DNA strand 

breakage and arrest in late S or early G2 stages of the cell cycle.  Cells were incubated 

with etoposide at an optimal concentration of 20μg/ml for 4 hours with and without Z-

VAD-FMK. 

 

RNase protection assay 

     RNA was isolated from cells cultured in the presence of 10μM ZDV (72 hours) and/or 

10μM SMX-HA (8 hours) using TRIzol® reagent (Invitrogen, Carlsbad, CA).  RNase 

protection assay was performed using the BD Riboquant™ RPA kit (BD Pharmingen, 

San Diego, CA) using the mAPO Multiprobe Template (BD Pharmingen) according to 

the manufacturer’s instruction.  Briefly, the RNA probe was synthesized using T7 RNA 

polymerase in the presence of ATP, GTP, UTP and CTP supplemented with [α-
32P]UTP.  Approximately 3.6x105 cpm of 32P-labeled probe was hybridized to RNA pools 
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from each sample at 560C overnight, followed by digestion with RNase T1/A for 15 

minutes at 370C.  The protected RNA fragments were precipitated and then separated 

on a 4.75% acrylamide gel, and imaged by autoradiography.  Band density for each 

mRNA encoding for caspases-8, -3, -6, -11, -2, -7, and -1 were calculated and 

compared to band density from the 2 housekeeping gene products, L32 and GAPDH. 

 

HPLC 
     Serum SMX concentrations were determined 18 hours after drug dosing by HPLC as 

previously described (210).  Briefly, 50µl of each serum sample was mixed with caffeine 

(20µg/ml) as an internal standard.  The drugs were extracted with 400µl acetonitrile, 

vortexed, and purified by centrifugation for 10 minutes.  The supernatants were then 

collected and evaporated under nitrogen gas, and resuspended in 50µl of mobile phase 

containing a v/v ratio of 80:20:1:0.5 deionized water, acetonitrile, acetic acid, and 

triethylamine.  Using a Shimadzu HPLC system (Kyoto, Japan), 10µl of sample was 

injected onto a Nova-pak C18 10cm x 5mm Z module solid phase column (Waters 

Corporation, Milford, MA) at a flow rate of 1ml/min.  UV absorbance detection at 254nm 

was performed with a SMX retention time of 12.1 minutes and an internal standard 

retention time of 3.5 minutes.  The accuracy of quality control samples based on 

percent difference ranged from 2.3 to 18.1 percent and the overall coefficient of 

variance was 0.056.  The standard curve peak area ratio SMX to internal standard was 

linear over a range of 5µg/ml to 1000µg/ml (r2 = 0.9866). 

 

Mrp1 mutation experiments 
     Mrp1 Targeted Mutation Mice were purchased from Taconic (Germantown, NY) 

along with gender-and age-matched FVB/N background controls.  The mrp1 gene 

encodes for the ATP-binding cassette, subfamily C, member 1A protein, commonly 

know as the multidrug resistance protein-1 (Mrp1).  This mutation renders mice deficient 

in functional Mrp1.  This protein is responsible for the cellular excretion of many drugs, 

GSH, and GSH-drug complexes (211).   Deficiency in this protein causes a significant 

decrease in GSH and GSH-conjugated substrate efflux, and increases cell sensitivity to 

many chemotherapeutic agents (211).  These Mrp1 functional knockout mice (Mrp1-/-) 
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and background-matched controls (FVB/N) were dosed with ZDV plus SMX-TMP or 

vehicle control via oral gavage for 14 days as described in detail in Chapter 2.  Mice 

were humanely killed and bone marrow was isolated as described above, and analyzed 

for apoptosis, and for B-lineage cell phenotype populations as outlined in Chapter 2.  

Bone marrow cells from drug-naïve mice were also placed into culture as previously 

described. 

 

Statistical analysis 
     All cell numbers and percentages were compared using one-way ANOVA followed 

by the Student-Neuman-Keul test for ad hoc pair-wise comparisons evaluating each 

treatment group compared to its corresponding control, using commercially available 

software (Sigmastat, SPSS, Chicago, IL).  Data that failed normality testing was 

compared using the Kruskal-Wallis One Way Analysis of Variance on Ranks method 

(Figure 3.8B).  Results were determined to be statistically significant when a p-value < 

0.05 was obtained.  Data are expressed as the mean +/- standard deviation. 

 

 

C.  RESULTS 
 

Concentration-dependent cytotoxicity increases with increasing SMX metabolite 
concentrations 
     Concentration-dependent cytotoxicity was observed in bone marrow culture after 24 

hour incubation with SMX-NO and SMX-HA, with SMX-HA causing a more potent 

toxicity than SMX-NO (Figure 3.2).  As concentrations of SMX metabolites increased in 

the presence of 1 and 10μM ZDV, viable percentages (annexin-V negative, PI negative) 

of B lymphocytes decreased (Figure 3.2A).  Maximum toxicity with SMX-HA occurred 

at the 100μM concentration at 24 hours, and substantial toxicity was not demonstrated 

with SMX-NO until the 40μM concentration was reached.  Percentage of apoptotic cells 

(annexin-V positive, PI negative) increased as concentrations of SMX metabolites 

increased, but at the highest concentration (500μM), the percentages of apoptotic cells 

were diminished, likely due to low percentages of viable cells remaining (Figure 3.2B).   
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Figure 3.2  Concentration-dependent cytotoxicity in 24 culture.  Mouse bone marrow 
was isolated and cultured at 1x106 cells per well in 24-well culture tissue culture plates 
with IL-7 at 25U/ml to stimulate B cell proliferation as detailed in Materials and Methods.  
ZDV at 1 and 10μM concentrations, and SMX-HA or SMX-NO at concentrations 
between 10 and 500μM were added to corresponding wells, and the cells were 
incubated for 24 hours.  Cells were harvested, stained with B220, annexin-V, and PI as 
described, and analyzed by flow cytometry.  Panel A shows percentage of cells that 
were viable (annexin-V negative, PI negative) at each concentration combination, and 
panel B depicts percentage of cells that were apoptotic (annexin-V positive, PI 
negative).  Data is representative of multiple trials. 
 

 

Importantly, the presence of ZDV at concentrations of 1 and 10μM did not contribute to 

the toxicity with 24 hours of incubation, as the viability and apoptosis curves at different 

ZDV concentrations were virtually identical. 

 

Absence of the reducing agent 2-ME, and the addition of TMP to culture, 
increased cytotoxicity 
     Because the toxic metabolites of SMX are oxidative species, and it has been shown 

that reducing agents limit their toxicity, a series of experiments was performed analyzing 

the contribution of 2-ME, a powerful reduction species present in our culture system, to 

the overall toxicity of ZDV and SMX metabolites to B cells.  Figure 3.3A shows that the 

toxicity to B lymphocytes is increased when 2-ME is removed from cell culture in the 

presence of ZDV and SMX-NO or SMX-HA.  When comparing cell viability to panel A in 
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Figure 4.2, the toxicity is decreased from approximately 90% at lower SMX metabolite 

concentrations, to approximately 40 to 60% in the absence of 2-ME. 

     Figure 3.3B depicts the cytotoxicity resultant from the addition of TMP to the culture 

system along with ZDV and SMX metabolites (again in the absence of 2-ME).  Viable 

cell percentages are shown, and the addition of TMP increased cytotoxicity among B 

cells in culture, reducing viability to approximately 20-30% at the lower SMX-HA 

concentrations. 
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Figure 3.3  Absence of 2-ME, addition of TMP increase toxic effects.  Mouse bone 
marrow was isolated and cultured at 1x106 cells per well in 24-well culture tissue culture 
plates with IL-7 at 25U/ml to stimulate B cell proliferation as detailed in Materials and 
Methods, except in these experiments, 2-ME was omitted from the culture medium.  
ZDV at 10 and 100μM concentrations, TMP at 1 and 10μM (panel B), and SMX-HA or 
SMX-NO at concentrations between 10 and 500μM were added to corresponding wells, 
and the cells were incubated for 24 hours.  Cells were harvested, stained with B220, 
annexin-V, and PI as described, and analyzed by flow cytometry.  Data depicts 
percentage of B cells viable (annexin-v negative, PI negative) (A) with SMX metabolite 
and ZDV exposure, and (B) when TMP is also added along with SMX-HA and ZDV.  
Graphs are representative of one trial only. 
 

 

ZDV contributes to cytotoxicity when exposure is lengthened to 72 hours 
     Mouse bone marrow was again cultured along with IL-7 and 2-ME, with the addition 

of ZDV and SMX-HA to the culture medium.  In this set of experiments, ZDV exposure 

(10 and 100μM) was lengthened to 72 hours.  SMX-HA, at increasing concentrations, 

was added to the cells for the final 18 hours of incubation time.  Upon harvest and 
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analysis by trypan blue staining and flow cytometry, cytotoxicity increased with 

increasing ZDV concentrations.  In Figure 3.4, panels A and B depict total cell and B cell 

viable percentages, respectively, over increasing SMX-HA concentrations for ZDV 0, 

10, and 100μM series.  As ZDV concentration increased, cytotoxicity increased.  Panel 

C shows the total number of cells that were viable that correspond to the percentages in 

Figure 3.4A.  In panel D, the percentages of B cells that were apoptotic are shown as a  
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Figure 3.4  ZDV cytotoxicity with 72 hours incubation.  Mouse bone marrow was 
isolated and cultured at 1x106 cells per well in 24-well culture tissue culture plates with 
IL-7 at 25U/ml to stimulate B cell proliferation as detailed in Materials and Methods.  
ZDV at 0, 10, and 100μM concentrations was incubated with the cells for 72 hours, and 
SMX-HA was added to the appropriate wells at concentrations between 10 and 500μM 
for the final 18 hours of incubation.  Cells were harvested, stained with B220, annexin-
V, and PI as described, and analyzed by flow cytometry.  Viability was also determined 
for the total cell population by trypan blue staining.  Data depicts percentages of (A) 
total cells and (B) B cells viable after drug exposure.  Panel C represents the total 
number of viable cells in culture, and panel D represents the percentage of B cells that 
were apoptotic (annexin-V positive, PI negative).  Data are representative of multiple 
trials. 
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function of increasing SMX-HA concentration.  The percentages of apoptotic cells fall 

with increasing concentrations of SMX-HA because most cells are already dead at the 

higher concentrations. 

 
Cytotoxicity in vitro is synergistic 
     When culture conditions were determined to produce an induction of cytotoxicity with 

each drug and in combination (see above), we analyzed the data generated to assess 

synergy.  The median-effect combination index method was used to calculate CI values.  

CI=1 was defined by Chou and Talalay as signifying an additive effect.  CI<1 indicates 

synergy between 2 agents, and CI>1 indicates antagonism.  CI values were calculated 

for dose effect levels based on levels of cell death of 25, 50, and 75%.  Parameters 

used to calculate CI were derived from dose-response curves generated for ZDV alone, 

SMX-HA alone, and the combination of both drugs used at a ratio of 1:1.  Cells were 

cultured in the presence of IL-7 at 1x106 cells/ml per well as described and over 

incubation times for ZDV and SMX-HA of 72 hours and 24 hours, respectively.  

Concentrations ranged from 1 to 100μM for ZDV, and from 10 to 100μM for SMX-HA.  

Table 3.1 shows the IC values at the various levels of cell death, along with the  

 

Table 3.1  Combination index values for synergy. 

Agent CI value cell death induction, IC(x) Parameters 

 IC25 IC50 IC75 Dm(uM) m r 

ZDV    61.1 0.56 0.91 

SMX-HA    51.9 0.48 0.93 

Combination 0.16 0.31 0.63 8.17 0.39 1.00 

Interaction synergy synergy synergy    

 
Combination index values calculated at various levels of cytotoxicity of total bone 
marrow cells treated with the combination of ZDV and SMX-HA.  CI=1 indicates 
additivity, CI<1 indicates synergy, and CI>1 indicates antagonism.  IC(x)=concentration 
at which cell death is induced by x%.  Dm=median-effect dose (IC50), m=slope 
parameter, and r=correlation coefficient of median-effect plot.  Data is representative of 
multiple experiments. 
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parameters from the median-effect plots.  The cytotoxic effect of the 2 drugs in 

combination is synergistic to bone marrow cells in vitro. 

 
Most apoptotic cells arise from the S/G2/M phases 
     To further explore how cell cycle affects relate to apoptosis with ZDV plus SMX-TMP 

exposure, we designed a series of experiments to investigate from which stages of the 

cell cycle cells were becoming apoptotic.  Mouse bone marrow cells were either 

incubated for 20 hours with 1mM hydrocortisone, or with ZDV 10μM for 72 hours with 

SMX-HA 20μM added for the final 24 hours.  These doses were chosen based upon the 

data presented in Figure 3.4, due to the high percentage of apoptotic cells at this dosing 

combination. 

     Cells were analyzed for apoptosis via the Tunel assay while simultaneously stained 

with PI.  The data is displayed in Figure 3.5.  Panels A and B are representative dot 

plots for cells exposed to hydrocortisone (A) and ZDV plus SMX-HA (B).  Regions 

indicate cells in the G0/G1 interval of the corresponding cell cycle histograms.  It is 

evident that the majority of cells that are apoptotic (BrdU-FITC positive) arise from the 

S/G2/M phases as a result of ZDV plus SMX-HA exposure (panel B).  Comparatively, 

hydrocortisone treatment causes cells to undergo apoptosis in a cell-cycle non-specific 

manner, as the apoptotic cell proportions are similar to overall cell cycle proportions 

(panel A).  Panel D shows the percentages of total cells that were in G0/G1 phases, in 

S phase, and the percentage of total cells that were simultaneously in S/G2/M phases 

and apoptotic.  This data demonstrates that ZDV plus SMX-TMP exposure is causing 

cells to initiate the apoptotic process from these phases, and that cells are sequestered 

in the S phase, with a simultaneous depletion of cells reaching G0/G1.  Statistically-

significant differences were not reached because only 2 wells were used per 

experiment. 

 

Addition of a pan-caspase inhibitor did not alter apoptosis induction 

     Mouse bone marrow was again cultured as above, along with ZDV at 100μM for 72 

hours, with the addition of SMX-HA for the final 1 or 2 hours of incubation.  The pan-

caspase inhibitor Z-VAD-FMK at a concentration of 20μM was added to the appropriate  
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Figure 3.5  Relationship between apoptosis and cell cycle.  Bone marrow cells were 
obtained from normal BALB/c mice and placed into culture with IL-7 at 1x106 cells/ml 
per well as described in Materials and Methods.  Cells were either incubated for 20 
hours with 1mM hydrocortisone, or with ZDV 10μM for 72 hours plus SMX-HA 20μM for 
the final 24 hours.  Cells were harvested and analyzed via the Tunel assay while 
simultaneously stained with PI.  Panels A and B display flow cytometry output from 
representative dot plots for cells exposed to hydrocortisone (A) and ZDV plus SMX-HA 
(B).  Regions indicate cells in the G0/G1 interval of the corresponding cell cycle 
histograms.  Panel C shows the percentage of total cells that were in G0/G1 phases, in 
S phase, and the percentage of total cells that were concurrently in S/G2/M phases and 
apoptotic.  Data represents mean percentages for 2 wells per group, and are 
representative of multiple repetitions.  Differences were not statistically significant for p 
< 0.05. 
 
 

wells 15 minutes before the SMX-HA.  Figure 3.6 shows that as SMX-HA 

concentrations increase, apoptosis increases.  Z-VAD-FMK did not significantly 

decrease this apoptotic effect at any concentration, or at either timepoint.  The 

etoposide-exposed cells served as a positive control, showing that Z-VAD-FMK 
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significantly decreased percentage of apoptotic cells (annexin-V positive, PI negative) 

and returned it to baseline. 
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Figure 3.6  Caspase inhibition and apoptosis.  Mouse bone marrow was isolated and 
cultured at 1x106 cells per well in 24-well culture tissue culture plates with IL-7 at 25U/ml 
to stimulate B cell proliferation as detailed in Materials and Methods.  ZDV at 100μM 
was incubated with the cells for 72 hours, and SMX-HA was added to the appropriate 
wells at 10 and 100μM concentrations for the final 1 or 2 hours of incubation, as 
indicated.  The pan-caspase inhibitor Z-VAD-FMK at 20μM was added to half of the 
wells 15 minutes prior to the addition of SMX-HA.  Cells were harvested and stained for 
apoptosis with annexin-V and PI as described, and analyzed by flow cytometry.  Cells 
were gated on lymphocytes and the percentages apoptotic (annexin-V positive, PI 
negative) are reported.  Etoposide 20ug/ml was used as a positive control to induce 
apoptosis (4 hour incubation).  Each bar represents triplicate wells.  A statistically-
significant reduction in apoptosis (*) by the addition of Z-VAD-FMK was defined at p < 
0.05. 
 

 

mRNA of initiator and effector caspases is not up-regulated in the presence of 
combination drug exposure 
     Bone marrow isolated from normal mice was once again placed into culture as 

described above for 72 hours with 10μM ZDV added to 50% of the wells.  For the final 8 

hours, SMX-HA was added at a concentration of 10μM to the appropriate wells to 

generate cells that were exposed to ZDV, SMX-HA, both drugs, or neither.  At the end 

of the incubation, cells were harvested and RNA was isolated with TRIzol Reagent.  

RPA was performed as described to ascertain relative message of genes encoding 
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signaling and effector caspases.  Data comparing the mRNA expression to the 

housekeeping genes L32 and GAPDH are presented in Figure 3.7.  Combination 

exposure did not increase the relative expression of any caspases tested.  The cells 

that were exposed only to SMX-HA had moderate increases in relative message levels 

of caspase-8, caspase-3, and caspase-2.  This experiment has not been repeated and 

the results should be viewed as preliminary. 
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Figure 3.7  Message expression for signaling and effector caspases.  Bone marrow 
isolated from normal mice was cultured as described for 72 hours with 10μM ZDV 
added to 50% of the wells.  For the final 8 hours, SMX-HA was added at a concentration 
of 10μM to the appropriate wells to generate cells that were exposed to ZDV, SMX-HA, 
both drugs, or neither (control).  RNA was isolated with TRIzol Reagent.  RPA was 
performed as described using the mAPO Multiprobe template to ascertain relative 
expression of genes encoding caspase-8, caspase-3, caspase-6, caspase-11, caspase-
2, caspase-7, and caspase-1.  Expression of mRNA relative to the housekeeping genes 
L32 and GAPDH were plotted.  Data is representative of a single experiment. 
received ZDV plus SMX-TMP versus mice that received only SMX-TMP. 
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SMX steady-state serum concentrations were increased with ZDV exposure 
     To investigate whether there was a systemic pharmacokinetic effect on drug 

disposition, SMX serum concentrations were compared between mice that  

Mean SMX serum concentrations for these groups of mice are shown in Figure 3.7A.  

Samples are indicative of drug concentrations 18 hours after the 28th daily doses of 

SMX-TMP and ZDV.  Mice were dosed as described in detail in Chapter 2.   
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Figure 3.8  SMX serum concentrations.  SMX serum concentrations increased in mice 
when also exposed to ZDV.  Normal BALB/c mice were dosed for 28 days with SMX-
TMP (840mg/kg SMX and 160mg/kg TMP) with or without ZDV (240mg/kg) daily via 
oral gavage.  Mice were humanely killed after 28-days dosing, 18 hours after the final 
dose of each drug, and serum was collected.  SMX concentration was determined by 
HPLC as detailed in Materials and Methods (panel A).  Panel B shows the standard 
curve generated using the peak height ratio with the internal standard.  Panel C is a 
representative chromatogram from a mouse in the SMX-TMP group, showing the 
internal standard peak (3.542 minute retention time) and the SMX peak (12.083 minute 
retention time).  Significant difference to control group (*) was defined at an alpha level 
of < 0.05.  Data represents 5 mice per treatment group, and representative of 2 
separate experiments. 
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The mean SMX concentration in the combination treatment group was 95.4 ± 13.5 

μg/ml, which was significantly higher than the mean SMX concentration in the SMX only 

group (46.4 ± 33.5 μg/ml).  Figure 3.8B illustrates the standard concentrations curve 

used to calculate sample concentrations, with an r2 value relating SMX concentration to 

peak height ratio of SMX to the internal standard of 0.9866.  Panel C of Figure 3.8 is a 

representative chromatogram showing the internal standard peak (3.542 minute 

retention) and SMX peak (12.083 minute retention). 

 
Mrp1-/- mice  
     One hypothesis to explain the altered disposition of SMX by ZDV concerns the up-

regulation of Mrp4 by ZDV (discussed above).  Because of the availability of Mrp1-/- 

mice, and because Mrp1 has the same function of GSH and GSH-substrate efflux as 

does Mrp4, we decided to test whether the absence of Mrp1 had any effect on SMX 

toxicity.  Figure 3.9A represents data collected after bone marrow cells from Mrp1-/- and 

FVB/N background control mice were incubated in the presence of SMX-HA for 24 

hours.  Although no statistics could be performed, there was a slight decrease in the 

percentage of viable cells in the Mrp1-/- animals versus the control mice, as well as a 

slight increase in percentage of dead cells at each concentration combination.  The 

percentages of apoptotic cells were virtually identical between the two strains (Figure 

3.9A). 

     We then dosed mice of both phenotypes as described above with either the 

combination of ZDV and SMX-TMP, or neither drug for a period of 14 days.  Figure 3.8B 

depicts percentages of dead B220+ B cells and apoptotic B220+ B cells harvested from 

the bone marrow of Mrp1-/- and background control mice.  Of importance, only 2 of the 5 

Mrp1-/- mice dosed with ZDV plus SMX-TMP survived until time of sacrifice.  The 

percentages of dead cells (annexin-V positive, PI positive) and apoptotic cells (annexin-

V positive, PI negative) in the combination treatment mice were only significantly 

increased in the background control mice.  The Mrp1-/- mice show a trend toward an 

increase in dead and apoptotic B cell percentages, but the data is not statistically 

significant.     
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Figure 3.9  Mrp1-/- mice display similar toxicity as background controls.  Mouse bone 
marrow was isolated from Mrp1-/- and background matched FVB/N mice as described.  
Cells were cultured at 1x106 cells per well in 24-well culture tissue culture plates with IL-
7 at 25U/ml to stimulate B cell proliferation as detailed in Materials and Methods.  SMX-
HA was incubated with the cells for 24 hours, and cells were harvested and stained for 
CD19, annexin-V, and PI and analyzed for apoptosis via flow cytometry.  Panel A shows 
percentages of bone marrow B cells that are either viable (annexin-V negative, PI 
negative), dead (annexin-V positive, PI positive), or apoptotic (annexin-V positive, PI 
negative) for each mouse strain for increasing SMX-HA concentrations.  In addition, 
Mrp1-/- and FVB/N mice were dosed in vivo for 14 days with either ZDV plus SMX-TMP 
or control vehicle daily via oral gavage, and the bone marrow was harvested.  Panel B 
shows the percentage of cells in the bone marrow that were either dead (annexin-V 
positive, PI positive) or apoptotic (annexin-V positive, PI negative).  Panel C illustrates 
the numbers of B-lineage cells after 14 days of dosing discerned by flow cytometry in 
both mouse strains and both treatment groups, including pre-pro-B, pro-B, and late pre-
B cells.  The early pre-B cell subtype populations are expressed on panel D due to the 
smaller scale needed.  Differences of statistical significance (*) from control were 
defined at a p-value of < 0.05.  Data in panels B-D are mean ± SD, representative of 
one experiment only, with 2-5 mice per group. 
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     Upon examination of B-lineage subtypes in the bone marrow, pre-pro-B, pro-B, and 

late pre-B cell numbers were similarly depleted in both mouse strains by combination 

drug treatment (Figure 3.9C).  Differences were statistically significant in the FVB/N 

background control mice, but not in the Mrp1-/- strains, due to the fact that only 2 mice 

lived to the time of sacrifice in the combination therapy group of the Mrp1-/- mice.  Early 

pre-B cell numbers, although depleted to a degree in the combination-treated groups in 

both mouse strains, did not reach statistically-significant differences (Figure 3.9D).  

These results should be considered preliminary since these in vivo experiments have 

not been repeated. 

 

 

D.  CONCLUSIONS 
 

     While this chapter contains much data that is preliminary in nature, many aspects of 

the combination toxicity concerning ZDV and SMX-TMP have been addressed.  These 

data have laid a foundation for further investigation into the mechanism of this toxicity. 

     ZDV and SMX metabolites both cause concentration-dependent toxicity to IL-7 

dependent B cell populations in our in vitro model.  We confirmed the fact that SMX-HA 

is more toxic than SMX-NO here in B cells, as has been shown in the literature to be the 

case in lymphocytes and neutrophils (152).  We were unable to demonstrate 

contributions of ZDV to the toxicity with 24 hours exposure; its effects were contributory 

only when exposure time was extended to 72 hours.  Synergy was then demonstrated 

at doses ranging from IC25 to IC75.  Future work to determine synergy in vivo would be 

contributory to this study.  The steady-state concentrations obtained for SMX in patients 

also receiving ZDV increased to over the IC50 of SMX from the in vitro data.  The 

significance of this is yet to be determined. 

     It is known that the toxicity of the oxidative metabolites of SMX can be diminished by 

the presence of reducing agents, such as GSH.  Here, we have shown that the 

combination toxicity is also decreased by the presence of 2-ME in the culture medium.  

When it was removed, cell viability was much lower as a result of drug exposure at 
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corresponding concentrations of ZDV and SMX metabolites.  The removal of 2-ME is 

expected to lower the baseline viability rate in any culture system. 

     Apoptosis is also confirmed in this chapter by a second method of measurement, the 

Tunel assay.  Figure 3.5 demonstrates that cells are selectively entering the apoptotic 

state from the S/G2/M phases of the cell cycle.  This confirms the data from our in vivo 

trials indicating that cells are being sequestered in these proliferative phases in the early 

pre-B cell population.  The evidence that cells are entering apoptosis from selected 

phases strengthens the argument that this is a cell-cycle specific effect. 

     Apoptosis can be caused by the presence or absence of a variety of stimuli, but most 

often the intracellular signaling pathways utilize caspases to carry out the apoptotic 

process.  Whether the initiation is mediated through death receptors on the cell surface, 

or through the mitochondrial pathways, several caspases are activated to signal an 

apoptotic death.  It appears that B cells in our culture system are undergoing a caspase-

independent apoptosis as a result of ZDV plus SMX-HA treatment.  Refer to Chapter 6 

for an in-depth discussion.     

     The addition of the pan-caspase inhibitor Z-VAD-FMK did not diminish the 

percentage of cells in the apoptotic phase as a result of combination drug exposure.  

This is shown in Figure 3.6 for cells incubated with ZDV 100μM for 72 hours and SMX-

HA at 10 and 100μM for the final 1 or 2 hours.  This short incubation was the optimal 

time to test, as apoptosis occurs quickly upon SMX-HA exposure when cells have been 

in the presence of ZDV for an extended period.  Of note, the aldehyde-based caspase-3 

inhibitor Ac-Asp-Met-Gln-Asp-CHO (Ac-DMQD-CHO) was also used in many 

experiments in an attempt to inhibit apoptosis as a result of drug exposure.  Although it 

was never effective in diminishing the apoptotic effect, an appropriate positive control 

was never established, so the data was not presented. 

     This caspase-independent mechanism of apoptosis is also supported by the RPA 

data presented in Figure 3.7.  Combination drug exposure did not alter the relative 

message levels of any caspases tested.  Although message was slightly increased in 

the SMX-HA exposure group of caspases 8, 3, and 2, we cannot draw any conclusions 

from this data, because of a lack of confirmatory trials.  See Chapter 1 for a detailed 

discussion of apoptosis. 
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     The steady-state SMX concentration in the serum is increased in mice receiving 

concurrent ZDV treatment.  The 28-day data shown in Figure 3.8 was also confirmed by 

data generated after 21 days of dosing.  This is a significant piece of information with 

regards to the mechanism of combined toxicity.  This is a foundation for further study.  

The SMX concentration was increased from approximately 50μg/ml to 100μg/ml.  This 

corresponds to a molar increase from approximately 200μM to a level of 400μM.  When 

comparing these ranges to our in vitro studies, this increase is within the concentration 

range tested, that showed a dose-dependent increase in toxicity.  However, both 

concentrations are in the range in which toxicity was at its maximum.  How this 

corresponds to concentrations obtained in the bone marrow is unknown. 

     If GSH efflux is involved in this drug-drug interaction, the in vitro data obtained using 

Mrp1-/- mice support the hypothesis that ZDV competitively inhibits the transport of 

SMX-HA-GSH complexes, thereby increasing the SMX-HA concentrations inside the 

cells.  This would increase the sensitivity of bone marrow cells from the Mrp1-/- mice, 

which was seen slightly in Figure 3.9A.  While there is a slight increase in toxicity in 

vitro, the in vivo dosing data in Figure 3.9 shows that the absence of Mrp1 may be 

protective.  This, despite the fact that 3 of the 5 Mrp1-/- mice dosed with ZDV plus SMX-

TMP died.  The cause of death in the mice that died is unknown.  These results do not 

take into account other mechanisms of GSH and GSH-substrate efflux that could be 

compensating for the lack of transport from Mrp1.  Clearly, further study is needed to 

determine the role of Mrp transporters in this context. 

     Because we find the toxicity of this combination to be concentration (or dose) -

dependent, this data raises the concern of the potential clinical significance of this 

interaction.  It is difficult to determine allometrically the proper dose to give to mice to 

mimic human drug exposure, especially to generate comparable exposure to sites that 

have unknown drug concentrations, such as the bone marrow.  The next step taken was 

to investigate the effect of combination drug exposure on the immune response in mice 

challenged with an infectious agent, which will be presented in Chapter 4. 

 

 
Copyright © David James Feola 2005 
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CHAPTER 4:  Impact on host response 
 
 
A.  OVERVIEW 
 

     The previous chapters demonstrate that ZDV plus SMX-TMP exposure decreases 

immune cell populations in the bone marrow of normal mice due to apoptosis induction.  

Our next goal was to investigate whether the effects of this drug toxicity have an impact 

on host response.  To determine this, BALB/c mice were exposed to each drug 

separately or in combination as described.  On day 4 after dosing completion, mice 

were infected intratracheally with Pneumocystis murina.  This infection model was 

utilized to investigate cellular and humoral immune responses in these mice as a result 

of combination drug exposure. 

     PCP continues to be one of the most common AIDS defining illnesses (212, 213).  

The Centers for Disease Control and Prevention recommend clinicians to prophylax for 

PCP when HIV-infected individuals have CD4+ T lymphocyte counts of less than 200 

cells/μl (214).  The drug of choice for the prophylaxis and treatment of this fungal 

infection is SMX-TMP, which has been shown to improve survival rates among patients 

with HIV (214).  SMX and TMP are used in combination to potentiate their inhibition of 

folate synthesis and increase activity against Pneumocystis, as well as many 

susceptible bacteria. 

     Components of adaptive immune function that are necessary in the clearance of 

Pneumocystis murina from mice have been thoroughly studied.  Mice that lack 

functional CD4+ T cells have an inability to mount an effective response to 

Pneumocystis (215, 216).  In addition, mice that lack functional B lymphocytes have 

been shown to also be highly susceptible to Pneumocystis infection (217-219).  

Because B cells are depleted from the bone marrow of mice that receive ZDV and SMX-

TMP, we used this infection model to assess the impact of drug toxicity upon host 

response to an opportunistic pathogen. 

     Our hypothesis was that exposure to ZDV plus SMX-TMP would alter the humoral 

immune response to pulmonary Pneumocystis infection in normal mice, and the 
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clearance of Pneumocystis would be delayed.  The aims of this chapter were 1) to 

evaluate the cellular host response to Pneumocystis in the lungs and draining lymph 

nodes, 2) to compare Pneumocystis-specific antibody responses between groups, and 

3) to evaluate Pneumocystis clearance profiles among drug dosing groups.  An 

additional aim in this series of experiments was to characterize the recovery of B-

lineage populations in the bone marrow after drug discontinuation. 

     Immune cell populations (in lung digest and bronchial alveolar lavage fluid (BALF), 

and tracheobronchial lymph nodes (TBLN)), lung Pneumocystis burden, and serum 

Pneumocystis-specific antibody titers were determined at post-infection timepoints.  The 

result of combination drug exposure was primarily manifested in the B cell response in 

the TBLN, resulting in a lower Pneumocystis-specific antibody titer in the serum.  The 

overall effect did not significantly change Pneumocystis clearance, although there was a 

trend of a delayed clearance in the combination treated animals. 

 

 

B.  MATERIALS AND METHODS 
 

Mice and experimental design 

     Four- to six-week old BALB/c mice were obtained from NCI (Indianapolis, IN) and 

quarantined for at least 7 days before manipulation.  C.B-17 severe combined 

immunodeficient mice (SCID), originally from Taconic (Germantown, NY), were bred in 

our facility and used to maintain a source of Pneumocystis.  Mice were housed in the 

Veterans Administration Veterinary Medical Unit under pathogen free conditions with a 

12 hour light/dark photocycle and food and water both freely available.  All experiments 

and procedures were approved by the Veterans Administration Institutional Animal Care 

and Use Committee. 

     ZDV (3’-azido-3-deoxythymidine), TMP (2,4-diamino-5-[3,4,5-trimethoxy-

benzyl]pyrimidine), SMX (4-amino-N-[5-methyl-3-isoxazolyl]benzenesulfonamide) were 

purchased from Sigma-Aldrich (St. Louis, MO).  Drug doses were prepared daily by 

weighing each powder form into polypropylene tubes, SMX and TMP together, and ZDV 

separately, and suspending each in its appropriate vehicle:  ZDV dissolved into sterile-
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filtered deionized water to a concentration of 50mg/ml, SMX and TMP suspended in 

0.5% methylcellulose at concentrations of 106mg/ml and 8mg/ml, respectively.  Mice 

were randomized into four treatment groups, either receiving ZDV or SMX-TMP alone, 

in combination, or vehicle only (control), at the following doses based on an 

approximate mean mouse weight of 20 grams:  ZDV 240mg/kg (5mg per mouse), SMX 

840mg/kg (16mg per mouse), and TMP 160mg/kg (1.2mg per mouse).  Each mouse 

received two doses daily, either with drug or vehicle.  Doses were given via oral gavage 

with an 18-gauge blunt-tipped dosing needle. 

 
Pneumocystis infection 

     Lungs from Pneumocystis-infected immunodeficient mice were excised and pushed 

through steel mesh in Hank’s Balanced Salt Solution (HBSS).  Aliquots were spun onto 

glass slides, fixed in methanol, and stained with Diff-Quik (Dade Behring Incorporated, 

Newark, DE).  Pneumocystis was enumerated microscopically as described below (215, 

220, 221).  Mice were infected intratracheally under halothane anesthesia with 107 

Pneumocystis organisms 4 days after discontinuation of drug dosing.  Mice were then 

humanely killed at various timepoints post-infection for analysis. 

 

Tissue processing and Pneumocystis enumeration 
     Lungs were lavaged by tracheal cannulation under deep halothane anesthesia with 5 

washes performed with 1ml HBSS containing 3mM ethylenediaminetetraacetic acid 

(EDTA).  Lungs were minced and digested by incubation with 50 U/ml DNase and 

1mg/ml collagenase A and pushed through mesh to form single cell suspensions.  

TBLN were excised into HBSS and pushed through mesh to create single cell 

suspensions.  Bone marrow was flushed from femurs and tibias into RPMI-1640 plus 

5% fetal calf serum, and single cell suspensions were obtained via passage through a 

25-gauge needle.  Red blood cells in all samples were lysed with hypotonic buffer 

consisting of 8.24g/l ammonium chloride, 1g/l potassium bicarbonate, and 37.2mg/l 

EDTA.  Cells were then washed, enumerated, and transferred into 5ml round-bottom 

polystyrene tubes for phenotyping via flow cytometry.  Lung digest aliquots were diluted 

to 1:20 and 100μl was spun into a 28.3 mm2 area on glass slides using a cytocentrifuge, 
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then fixed with methanol and stained with Diff-Quick staining solutions.  Pneumocystis 

nuclei were enumerated microscopically by counting the number of nuclei per 20-50 oil 

emersion fields.  This number was used to calculate the total number of nuclei per lung 

(215, 220, 221).  Slides from the mice were counted in a randomized, blinded fashion.  

The limit of detection of Pneumocystis was log10 3.23. 

 

Cell phenotyping 
     Splenocytes, BALF cells, and lung digest cells were incubated with the appropriate 

concentrations of fluorescently-labeled monoclonal antibodies (mAb) specific to murine 

T cells (CD4, CD8, CD44, and CD62L) and B cells (CD19, CD80 and CD86).  Activated 

CD4+ and CD8+ T cells were defined as the CD44hi/CD62Llo phenotype, and B cells 

were considered activated if either CD80 or CD86 was up-regulated.  Bone marrow 

cells were incubated with 2 separate panels of fluorescently-labeled mAb for 

phenotyping B lineage cells.  Antibodies were purchased from BD Biosciences 

Pharmingen, San Diego, CA or eBiosciences San Diego, CA.  These panels were 1) 

IgM, CD43, and B220; and 2) CD43, B220, BP-1, and heat stable antigen (HSA).  

Subpopulations delineated included pre-pro-B, pro-B, early pre-B, and late pre-B cells 

according to B lineage subgroups as described by Hardy et. al. (178).  Cells were 

washed before and after staining with Dulbecco’s Phosphate Buffered Saline containing 

0.1% bovine serum albumin and 0.02% sodium azide.  All cells were analyzed for 

phenotype by flow cytometric multiparameter analysis using a FACSCaliber Flow 

Cytometer (BD Biosciences, Mountain View, CA) and analyzed using WinList software 

package (Verity Software House, Topsham, ME).  Greater than 50 thousand events 

were routinely examined. 

 

Apoptosis analysis 
     Cells were determined to be in the process of an apoptotic cell death by using the 

annexin-V binding protocol with propidium iodide (PI) exclusion kit according to the 

manufacturers instructions (BD Biosciences Pharmingen).  Samples were analyzed by 

flow cytometry as above, and cells that fluoresced annexin-V positive/PI negative were 

considered apoptotic. 
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Pneumocystis-specific enzyme linked immunosorbent assay (ELISA) 
     Specific antibodies to Pneumocystis antigens were measured in the serum of mice at 

each timepoint as previously described (221).  Blood was collected from the abdominal 

aorta, and sera were isolated by centrifugation and frozen at -800C until time of 

analysis.  96-well microtiter plates were coated with sonicated Pneumocystis (10µg/ml) 

for 2 hours, and coated plates were blocked with 5% dry milk in HBSS supplemented 

with 0.05% Tween 20 for 1 hour.  Test sera were diluted serially from 1:50 to 1:1600 

and incubated in the plates overnight at 40C.   Plates were extensively washed, and 

bound antibodies were detected by using anti-IgG and anti-IgM secondary antibodies 

conjugated to alkaline phosphatase.  After 4 hours at 370C, plates were washed and 

developed by using p-nitrophenylphosphate (1 mg/ml) in diethanolamine buffer and 

read at 405nm.  The endpoint dilutions at which the optical density at 405nm dropped 

below 0.1 are reported. 

 

Statistical analysis 
     All cell numbers, Pneumocystis counts, and antibody titers in the drug exposure 

groups were compared to the control group using one-way ANOVA followed by the 

Student-Neuman-Keul test for ad hoc pair-wise comparisons using commercially 

available software (Sigmastat, SPSS, Chicago, IL).  Data that failed normality testing 

was compared using the Kruskal-Wallis One Way Analysis of Variance on Ranks 

method.  Results were determined to be statistically significant when a p-value < 0.05 

was obtained.  Data are expressed as the mean ± standard deviation. 

 

 

C. RESULTS 
 

Combination dosing increased sensitivity to Pneumocystis inoculation 
     Day to day subjective observation of the mice showed an increase in lethargy, failure 

to groom, hunched appearance, and an overall decrease in health in the ZDV plus 

SMX-TMP group as compared to the other groups, becoming marked by approximately 
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day 7 of dosing.  During all infection experiments conducted, six out of a total of 24 mice 

in the combination treatment groups died after being infected with Pneumocystis.  The 

median time to death was 4 days, with a range of 1 to 7 days post-infection.  Out of all 

infection experiments completed, one of 24 mice in the control group died (1 day after 

inoculation), whereas all mice dosed in the single drug groups survived until time of 

sacrifice.  Only mice that survived to the scheduled timepoints were included in the 

analyses. 

 

B cell recovery in the bone marrow was delayed after drug discontinuation 
     We demonstrated in previous chapters that ZDV plus SMX-TMP ablates B lineage 

cell populations in the bone marrow.  To determine whether discontinuation of the drugs 

would result in recovery of bone marrow B cells, we examined total cellularity and total 

B cells at 10, 14, and 24 days post-dosing.  Total bone marrow cellularity had recovered 

to control levels by day 10 post-dosing (Figure 4.1).  The group of mice that received 

only ZDV had a mean bone marrow cellularity that was significantly higher than that of 

the control mice.  Despite total bone marrow numbers being normal in the combination 

group, we found that B lymphocytes were still significantly lower at this first timepoint  

Days Post-Dosing
10 14 24

C
el

ls
 (x

10
7 )

0.0

0.5

1.0

1.5

2.0

2.5
ZDV
SMX-TMP
Combination
Control

*

Days Post-Dosing
10 14 24

C
el

ls
 (x

10
6 )

0

1

2

3

4

5

6
Total Cells B Cells

*

 
Figure 4.1  Total and B cell population recovery after dosing discontinuation.  Mice 
were dosed with ZDV, SMX-TMP, ZDV plus SMX-TMP, or vehicle only for 21 days.  
Bone marrow was harvested from the femurs of mice at various timepoints after dosing 
was terminated.  Cells were enumerated by counting, and the number of B lymphocytes 
was determined by staining cells with fluorescently-labeled antibody specific for B220 
assessed by flow cytometry.  Data represent the mean ± SD of 4 mice per group and 
are representative of multiple repetitions.   *, P < 0.05 compared to vehicle only control. 
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(Figure 4.1).  To determine which B lineage cell types were affected to the highest  

degree, we enumerated each of the B lineage subtypes present at each timepoint 

(Figure 4.2).  Cell types presented in Figure 4.2A through 4.2D correspond to their order 

of maturity, with the number of cells recovered at each post-infection timepoint shown.  

Pro-B cells (B220+/CD43+/HSAlow) were significantly depleted at day 10 post-exposure 

(Figure 4.2B).  Late pre-B cells (B220+/CD43-/IgM-) were affected to the largest degree, 

with an 83% reduction in number compared to the control animals (Figure 4.2D).  Day  
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Figure 4.2  B lineage subtypes recovery after exposure termination.  Mice were dosed 
with ZDV, SMX-TMP, ZDV plus SMX-TMP, or vehicle only for 21 days.  Bone marrow 
was harvested from the femurs of mice at various timepoints after dosing was 
terminated.  Cells were fluorescently stained to delineate B lymphocyte precursors and 
absolute number of each were determined by flow cytometry including, in their order of 
maturation:  pre-pro-B (B220+/CD43+/BP-1-/HSA-), pro-B (B220+/CD43+/HSAlow), early 
pre-B (B220+/CD43+/BP-1+/HSA+), and late pre-B cell (B220+/CD43-/IgM-) subtypes in 
panels A through D, respectively.  Data represent the mean ± SD of 4 mice per group 
and are representative of multiple repetitions.   *, P < 0.05 compared to vehicle only 
control. 
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14 data demonstrated a partial recovery in these B lineage cell types, as statistically-

significant differences were no longer observed, and by day 24 the B lymphocyte 

populations in the bone marrow of combination treatment animals had made a full 

recovery. 

 

The cellular response to Pneumocystis was affected by the drug combination 
primarily in the lung-draining lymph nodes 
     To assess the adaptive cellular response to Pneumocystis challenge during 

reconstitution of bone marrow B lineage cells, cell phenotypes were analyzed in the 

lung digest, BALF, and TBLN over time after infection.  Lung lavage CD4+ and CD8+ T 

lymphocyte and lung digest CD19+ B lymphocyte populations are shown in Figure 4.3.  

No statistically-significant differences were observed at any timepoint in the T cell 

populations in the BALF (Figure 4.3A-B) as a result of single drug or combination drug 

exposure as compared to control animals.  The numbers of alveolar infiltrating T cells 

that displayed an activated phenotype (CD44hi/CD62Llo) likewise were not different 

among the treatment groups compared to control mice (Figure 4.3D-E).  Pulmonary 

CD19+ B cell and activated B cell (CD80+ and/or CD86+) numbers were similar among 

the groups at days 10 and 20 post-infection (Figure 4.3C and 4.3F).  At day 6 post-

infection however, total and activated B cells were significantly lower in the single drug 

treatment groups versus the control group, but this was not the case for the combination 

treatment animals.  These differences were due to a wide range of total cell counts in 

the lung digests at day 6 post-infection, and not because of differences in percentage of 

these cell types. 

     TBLN CD4+, CD8+, and CD19+ cell populations were significantly reduced at days 10 

and 20 post-infection in the mice that received both ZDV and SMX-TMP compared to 

control mice (Figure 4.4A-C).  Activated CD4+ T cells were fewer at day 10 post-

infection in the combination group, but the difference at day 20 post-infection did not 

reach statistical significance (Figure 4.4D).  Activated CD19+ B cells did not increase in 

response to the infectious stimulus on days 10 and 20 post-infection as they did in the 
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Figure 4.3  Lung digest and BALF immune cell populations.  Mice were dosed with 
ZDV, SMX-TMP, ZDV plus SMX-TMP, or vehicle only for 21 days.  After 4 days of rest 
to allow the drugs to clear, mice were intratracheally inoculated with 1x107 
Pneumocystis organisms isolated from a SCID colony of infected animals as detailed in 
Materials and Methods.  CD4+, CD8+ T cells, and their activated phenotype 
(CD44hi/CD62lo), along with CD19+ B cells and their activated phenotype (CD80+ and/or 
CD86+) were enumerated by flow cytometry in the BALF (T cells) and lung digest (B 
d with highly active antiretroviral therapy</title><secondary-title>Aids</secondary-
title></titles><periodical><full-title>Aids</full-title></periodical><pages>F217-2 time in 
panels D through F.  Data represent the mean ± SD of 4 mice per timepoint per group 
and are representative of 3 separate experiments.  *, p < 0.05 as compared to the 
vehicle only control group. 
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Figure 4.4  T and B cells populations in TBLN.  Mice were dosed with ZDV, SMX-TMP, 
ZDV + SMX-TMP, or vehicle only for 21 days.  After 4 days of rest to allow the drugs to 
clear, mice were intratracheally inoculated with 1x107 Pneumocystis organisms isolated 
from a SCID colony of infected animals as detailed in Materials and Methods.  CD4+ T 
cells, CD8+ T cells, CD19+ B cells, and their activated phenotypes (CD44hi/CD62lo T 
cells and CD80+ and/or CD86+ B cells) were enumerated by flow cytometry in the TBLN 
of mice at post-infection timepoints.  CD4+, CD8+, and CD19+ cell counts were plotted 
over time in panels A, B, and C, respectively. The activated phenotypes were plotted 
over time post-infection in panels D, E, and F.  Data represent the mean ± SD of 4 mice 
per timepoint per group and are representative of 3 separate experiments.  *, p < 0.05 
as compared to the vehicle only control group. 
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other groups (Figure 4.4F).  Interestingly, the mice that received only ZDV had a 

significantly elevated activated CD8+ cell number in the TBLN at day 6 post-infection 

compared to control mice, and mice receiving only SMX-TMP had an increased number 

of activated CD8+ cells at the day 20 post-infection timepoint (Figure 4.4E). 

 

Pneumocystis clearance kinetics corresponded to decreased specific IgG titers in 
drug combination-treated mice 
     Serum Pneumocystis antigen-specific IgG and IgM concentrations were measured 

by semi-quantitative ELISA to evaluate the humoral response to pulmonary infectious 

challenge after dosing with ZDV plus SMX-TMP.  Figure 4.5A shows that a significantly  
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Figure 4.5  Pneomocystis-specific serum IgG and IgM titers.  Mice were dosed with 
ZDV, SMX-TMP, ZDV + SMX-TMP, or vehicle only (controls) for 21 days.  After 4 days 
of rest to allow the drugs to clear, all mice were intratracheally inoculated with 1x107 
Pneumocystis organisms isolated from a SCID colony of infected animals as detailed in 
Materials and Methods.  At days 6, 10, and 20 post-infection PC-specific IgG (panel A) 
and IgM (panel B) endpoint dilution titers were determined by ELISA, with data from 
days 10 and 20 post-infection shown.  Data represent mean ± SD reciprocal endpoint 
dilution for 4 mice per timepoint per group.  *, p < 0.05 as compared to the control 
group. 
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lower Pneumocystis-specific IgG endpoint titer was seen in the mice that received 

combination exposure compared to infected control mice at day 20.  Additionally, there 

was a trend toward a significant decrease at day 10 post-infection.  Despite these 

decreases in IgG, the IgM titers were not significantly affected by combination treatment 

as compared to the single drug treatment and control animal groups (Figure 4.5B). 

     Decreased specific antibody levels corresponded to a trend toward a higher lung 

Pneumocystis burden on day 20 post-infection (p=0.080).   Although there was no 

statistically significant differences in Pneumocystis nuclei present in the lung digest of 

the combination treatment animals compared to controls at any timepoint (Figure 4.6), 

the data at day 20 reflected a mean Pneumocystis burden that actually increased from 

that of day 10 in the combination treated mice, whereas the Pneumocystis counts 

continued to decline in each of the other groups.  The group exposed to only SMX-TMP 

had a lung burden significantly lower than the combination treatment group (Figure 4.6). 
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Figure 4.6  Lung Pneumocystis burden.  Mice were dosed with each drug for 14 days 
as described in Materials and Methods and inoculated after 4 days of rest with 1x107 
Pneumocystis organisms intratracheally.  Lung burdens of PC were then determined 
microscopically at days 6 through 20 post-infection.  Data represent the mean ± SD 
Pneumocystis organisms per lung of 4 mice per group per timepoint.  †, p = 0.08 for the 
combination treatment group compared to the control animals.  **, p < 0.05 for the SMX-
TMP group compared to the combination treatment group. 
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D.  CONCLUSIONS 
 

     In this chapter we have shown that the toxicity caused by combination exposure to 

ZDV and SMX-TMP impacts the ability of mice to fully respond to an infectious 

challenge.  We have demonstrated that mice treated with ZDV plus SMX-TMP prior to 

Pneumocystis infection exhibits diminished B and T lymphocyte activation in the 

draining lymph nodes of the lungs in response to this organism.  The numbers of 

infiltrating lymphocytes into the site of infection were not altered to a significant degree 

as a result of combination drug exposure.  However, clearance of pulmonary infection 

with Pneumocystis in normal mice requires the use of a combination of cellular and 

humoral components of adaptive immunity, therefore we additionally examined TBLN 

lymphocyte populations, as well as antibody response (for a review, see Chapter 6). 

     TBLN populations of CD19+ B cells, as well as CD4+ and CD8+ T cells, were fewer in 

number after the response to Pneumocystis as compared to control mice at days 10 

and 20 post-infection.  B cells are responsible for differentiating into plasma cells that 

will secrete antibody against antigens associated with invading organisms.  As a result 

of decreased cell numbers in the draining lymph nodes, Pneumocystis-specific serum 

IgG titers were significantly lower in mice that were exposed to the combination of ZDV 

and SMX-TMP.  Previous characterization of this combination toxicity (by our group and 

others) revealed that peripheral T cell numbers in the spleen were unaffected (1).  Here, 

in the context of infection, total and activated CD4+ T cell frequencies were lower in the 

TBLN of the combination treatment animals.  This could be a direct effect of the drugs, 

or a secondary effect stemming from the B cell depletion, which will be discussed 

thoroughly in Chapter 6. 

     Although statistical significance was not reached, the clearance of Pneumocystis 

appears to have stalled in the mice exposed to both ZDV and SMX-TMP.  It would be 

informative to extend this experiment to examine timepoints greater than 20 days post-

infection.  It is unknown why the SMX-TMP only group of mice had an enhanced 

Pneumocystis clearance, as the 4 day rest period should have been ample time to clear 

the drugs from these mice.  There was a difference in Pneumocystis clearance between 

the SMX-TMP only group, and the group that received both SMX-TMP and ZDV.  Any 
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enhanced clearance of the organism that occurred in the SMX-TMP only group was 

ablated by the concurrent ZDV exposure. 

     Mice in the combination treatment group had a higher rate of mortality than mice 

from the other treatment groups.  Although the cause of death of these mice is 

unknown, it is likely that they died as a result of the stress associated with pulmonary 

inoculation, and not from Pneumocystis infection.  Time to death was 1-3 days from 

inoculation, and it would take much longer for an infection to develop from this slow-

growing organism.  ZDV plus SMX-TMP exposure seems to render the mice vulnerable 

to this stressor, perhaps due to an increased inflammatory response.  More work is 

needed to determine the reason for this increase mortality rate. 

     Overall bone marrow cellularity was restored by day 10 post-exposure, with all 

subpopulations restored except for B lineage cells.  Because pro-B and late pre-B cell 

populations were not fully recovered until after day 14 post-dosing, the altered response 

of B cells in the TBLN could be due to this residual bone marrow depletion in the mice 

receiving ZDV plus SMX-TMP. 

     Together, these findings suggest that the toxicity associated with the use of ZDV and 

SMX-TMP could adversely affect the immune response in HIV-infected patients as they 

respond to vaccines as well as infectious agents.  As the virus weakens the immune 

function in these individuals, it is important to discern whether this drug-drug interaction 

is propagating this impairment to a clinically-significant degree.  Chapter 5 investigates 

the clinical application of this work to address the impact of this toxicity in an HIV-

infected patient population. 

 
 
 
 
 
 
 
 

Copyright © David James Feola 2005 
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CHAPTER 5:  Clinical impact of combination drug exposure on host response 
 

 

A.  OVERVIEW 
 

     While HAART has an enormous impact on reducing morbidity and mortality in HIV-

infected patients by decreasing viral load, these agents are not free from toxicity.  The 

effects of these agents on the immune function of HIV-infected individuals have been 

underappreciated.  Researchers have defined adverse effects of HAART using in vitro, 

animal, and clinical investigations, which are reviewed extensively in Chapter 1.  While 

we have focused thus far on defining the toxicity with combination exposure to ZDV plus 

SMX-TMP in mice, we now extend our study into a human population of HIV-positive 

subjects to determine clinical relevance of this phenomenon.  The yearly influenza 

vaccine was used as a marker of host immunity to determine if response is altered in 

patients receiving ZDV plus SMX-TMP. 

     Influenza types A and B are the two types of influenza viruses that cause epidemic 

human disease (222).  New influenza virus variants result from frequent antigenic 

change (antigenic drift) due to point mutations occurring during viral replication.  The 

2004-2005 influenza virus vaccine (Fluzone®) contains inactivated viral hemagglutinin 

antigenic determinants representative of three prototype strains:  A/New 

Caledonia/20/99, A/Wyoming/03/2003 (an A/Fujian/411/2002-like strain) and 

B/Jiangsu/10/2003 (a B/Shanghai/361/2002-like strain) (222).  The vaccine contains the 

hemagglutinins of these strains that are likely to circulate in the United States for the 

winter months. 

     HIV infection has a detrimental effect on immune responses to infectious agents or 

other forms of immune challenge, such as vaccination.  This is due in part to the inability 

of B lymphocytes to mount antigen-specific antibody responses, as outlined in detail in 

Chapter 1 (52).  Influenza vaccination of HIV-infected individuals has been extensively 

studied, and the current recommendation from the CDC is to vaccinate all HIV infected 

persons at the beginning of each influenza season (214).  Investigators have shown, 

however, that lower percentages of HIV-infected patients will adequately respond to this 
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vaccine, demonstrated by the absence of protective influenza-specific antibody titers in 

the serum in high percentages of patients (223-225).  The success of this response has 

been correlated directly with CD4+ count, and inversely with viral load (226, 227).  It is 

not known if the interaction between ZDV and SMX-TMP contributes to this inability to 

produce an appropriate antigen-specific immune response, as clinical trials have not 

reported which patients were receiving particular drug regimens for HAART and OI 

prophylaxis.  Since patients who have low CD4+ counts (below 200 cells/µl) are usually 

on SMX-TMP, the interaction between SMX-TMP and ZDV could be a contributing 

factor. 

     We therefore conducted a clinical trial to investigate the effects of this drug 

combination on the ability of subjects to respond to an immune challenge.  The animal 

data presented in Chapter 4 revealed an altered antigen-specific antibody response in 

mice exposed to ZDV plus SMX-TMP.  The yearly influenza vaccine was utilized as a 

marker of immune response in a group of healthy HIV-infected patients to determine 

whether exposure to ZDV and SMX-TMP affected humoral immune function. 

     We hypothesized that humoral immunity would be altered as a result of combination 

drug exposure.  Our aims of the study were 1) to compare the antigen-specific antibody 

response in patients vaccinated for influenza who were receiving ZDV and SMX-TMP 

versus the appropriate control groups, 2) to compare peripheral blood lymphocyte 

populations among the groups, and 3) to examine the relationship between CD4 count 

and antigen-specific antibody response and how this relationship is altered with 

combination drug exposure.  We demonstrate that disease severity-matched patients 

receiving both drugs have an altered antigen-specific response to influenza vaccination. 

 

 

B.  MATERIALS AND METHODS 
 

Clinical Design 
     HIV-infected patients at the Bluegrass Care Clinic at the University of Kentucky 

Chandler Medical Center were screened for inclusion, and informed consent was 

obtained for those that met criteria and were willing to participate.  HIV-positive patients 
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between the ages of 18 and 65 years with CD4+ lymphocyte counts greater than 350 

cells/μl, undetectable viral loads, and receiving a HAART regimen unchanged for 

greater than 2 months were placed into one of four parallel treatment groups:  1) ZDV 

only (300mg twice daily), 2) SMX-TMP only (one double-strength tablet daily), 3) ZDV 

plus SMX-TMP, or 4) control group (receiving neither drug).  Patients with high CD4+ 

counts and undetectable viral loads were included to minimize the effects of the disease 

state on immune function. 

     Patients receiving ZDV as part of HAART were placed in either group 1, or were 

given a 28-day course of SMX-TMP and placed in group 3.  Patients not receiving ZDV 

as part of HAART were placed either in group 4, or given a 28-day course of SMX/TMP 

and placed in group 2 (Figure 5.1).  Exclusion criteria consisted of the following:  prior 

vaccination for influenza or history suggestive of influenza infection during the 2004-05 

season; current treatment with SMX/TMP or treatment within the past 2 months; 

hypersensitivity to any component of the influenza vaccine, including eggs, egg 

products, or thimerosal, or hypersensitivity to sulfonamides, TMP, or ZDV; current active 

infection (other than HIV) or acute febrile illness within the past 30 days; known folate 

deficiency or known glucose-6-phosphate dehydrogenase deficiency; pregnant patients 

or nursing mothers; severe allergies or severe bronchial asthma; renal or hepatic failure; 

and poor adherence to home medication regimens as deemed by patient, study 

personnel, or treating physician. 

 

Sample Collection 
     Baseline blood draws were obtained either on day 21 of the SMX/TMP course 

(groups 2 and 3) or on the day of consent (groups 1 and 4), after which patients 

received an intramuscular dose of the 2004 annual influenza vaccine (Fluzone®, Aventis 

Pharmaceuticals,Bridgewater, New Jersey).  Between 20 and 24 days after vaccination, 

blood was again drawn to assess immune response to the vaccine.  Blood was 

collected by venopuncture into tubes coated with EDTA to keep the blood 

anticoagulated.  Cellular components were analyzed by flow cytometry immediately as 

described below.  Serum was separated from the cellular component and frozen at -

800C for later analysis of influenza-specific IgG and IgM.  The study design is depicted 
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in Figure 5.1.  Personnel analyzing patient samples were blinded to patient group 

number.  Note that patients were not randomly assigned to groups.  The Institutional 

Review Board approved this study and all of its procedures. 

 

Flow cytometric analysis of peripheral lymphocytes 
     After serum separation, blood samples were incubated with fluorescently-labeled 

monoclonal antibodies specific to human cell surface markers for T cells (CD4, CD8, 

and CD25) and B cells (CD19, CD80, and CD86).  Antibodies were purchased from 

either Pharmingen (San Diego, CA) or eBioscience (San Diego, CA).  Activated CD4+ 

and CD8+ T cells were defined as cells staining positive for CD25, the IL-2R alpha chain  

 

 

Subjects on HAART with ZDV    Subjects on HAART without ZDV 
 
 
          SMX-TMP         SMX-TMP 
          Dosing (Day -21)        Dosing (Day -21) 
 
 
 
Group 1        Group 3   Group 2          Group 4 
ZDV only  ZDV + SMX-TMP  SMX-TMP only         Control 
 
 
 
 
Pre-vaccine serum sample, influenza vaccination at Bluegrass Care Clinic, Day 0                   
               (SMX-TMP dosing continues in Groups 2 and 3 through Day 7) 
 
 
 
 
                              Post-vaccination blood sample, Day 20-24 
 
 

Figure 5.1  Study design.  Subjects meeting inclusion/exclusion criteria who were on 
HAART +/- ZDV were placed into one of four groups as shown.  Groups 2 and 3 were 
generated by dosing subjects with a 28-day course of SMX-TMP.  The influenza 
vaccine was given on day 0, and a post-vaccination blood sample was obtained from 
each patient 20-24 days later. 
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that is up-regulated as the cells are activated.  B cells were considered activated if 

either CD80 or CD86 was up-regulated.  Both CD80 and CD86 are receptors that are 

up-regulated with B cell activation.  A 100μl aliquot of whole blood for each sample was 

placed into a tube containing antibodies for either the T or B cell panels, and incubated 

for 15 minutes at room temperature.  Erythrocytes were then lysed by the addition of 

2ml of lysing solution containing ammonium chloride (0.15M), sodium bicarbonate 

(10mM), and tetrasodium EDTA (1mM) for 10 minutes.  Cells were then washed and 

resuspended in PBS containing 1% paraformaledhyde for fixation.  After gating on 

lymphocyte populations defined by cell size and granularity, surface expression of each 

marker was determined by flow cytometric multiparameter analysis using a 

FACSCaliber Flow Cytometer (BD Biosciences, Mountain View, CA) and WinList 

software package (Verity Software House, Topsham, ME).  Greater than 50 thousand 

events were routinely examined. 

 

Antibody Titer Assay 
     Serum samples were thawed and sent to the medical reference laboratory ARUP 

Laboratories (Salt Lake City, UT) for influenza A and B virus IgG and IgM antibody 

quantification.  Amount of antibody was compared to reference values using an ELISA 

method.  The reference range of 0.89 or less corresponds to a negative result (no 

significant level of antibody present), 0.90 to 1.10 represents equivocal results, 

indicating a questionable presence of virus-specific antibody, and values greater than or 

equal to 1.11 indicate the presence of influenza antibodies at an immunoprotective titer. 

 

Statistical Analysis 

     Data are expressed as mean ± standard deviation for cell population percentages 

and antibody reference values.  Differences between treatment groups and the control 

group were determined by analysis of variance (ANOVA) followed by the Student-

Newman-Keuls post-hoc testing where appropriate.  Antibody responses (positive 

versus negative/equivocal) between the combination drug treatment group and control 

group were analyzed using Fisher’s Exact Test.  Differences were considered 

statistically significant when p was < 0.05.  SigmaStat statistical software (SPSS, Inc., 
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Chicago, IL) was used for these analyses.  Regression analyses of the relationships 

between antibody response and CD4 count were compared for overall coincidence by 

calculating the F-statistic to determine if a significantly better fit to the data is obtained 

by fitting it with two separate lines compared to fitting all of the data with one regression 

line.  This F-statistic was then compared to the critical value F for p < 0.025 with the 

appropriate degrees of freedom to determine statistical significance.  This Type I error 

rate was adjusted for multiple comparisons using the Bonferroni correction. 

 

 

C.  RESULTS 
 
Subject demographics were homogeneous among study groups 
     Twenty-eight subjects were enrolled in the study, and 23 were included in the final 

analysis.  Two subjects developed a rash on SMX-TMP and were terminated from the 

study, and 3 subjects did not return for post-vaccination blood sampling.  The 

demographics of the study population are outlined in Table 5.1.  Each group had 

between 5 and 7 individuals, with each group including one female.  Mean subject age 

and CD4+ lymphocyte counts were not significantly different among treatment groups.  

The average mean corpuscular volume was significantly higher for the two groups that 

received ZDV as compared to the control group.  Macrocytosis is a known effect of 

ZDV, and investigators have demonstrated that it is so reliable that it can be used to 

monitor adherence to ZDV therapy (103, 106).  All patients receiving ZDV were above 

the normal erythrocyte mean corpuscular volume range of 88 to 98 μl. 

     Antiretroviral regimens varied from 3 to 6 agents, with a median number of 3 or 4 in 

each group.  All 23 patients were receiving an NRTI other than ZDV.  Fifty-six percent 

were receiving an NNRTI, and only 26% were receiving a PI.  One patient in each 

group, with the exception of the combination group, was receiving multiple PI.  Subjects 

recorded doses of ZDV and SMX-TMP in dosing diaries as a measure of adherence to 

study protocol.  One patient reported missing one dose of SMX-TMP, while one other 

patient reported missing two doses of SMX-TMP.  All other patients reported 100% 

adherence to the study regimen of SMX-TMP, and to HAART. 
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Table 5.1  Patient demographics. 

 Dosing Groups ANOVA 

Parameters ZDV SMX-TMP Combination Control p-value 

  Age, mean years (range) 51.5 (46-61) 47.0 (32-59) 40.4 (26-47) 42.8 (32-54) 0.163 

  Gender, male/female 5/1 6/1 4/1 4/1  

  CD4, cells/μl (mean ± SD) 592.2 ± 333.5 692.8 ± 528.4 597.2 ± 254.5 850.8 ± 468.7 0.442 

  MCV, μm3 (mean ± SD) 111.2 ± 6.6* 95.0 ± 11.2 109.4 ± 4.1* 92.8 ± 2.0 <0.001 

HAART, number of agents 

  NRTI, median (range) 3 (2-4) 2 (1-2) 2 (2-2) 3 (1-3)  

  NNRTI, median (range) 1 (0-1) 1 (0-1) 1 (0-1) 1 (0-1)  

  PI, median (range) 0 (0-2) 0 (0-3) 0 (0-1) 0 (0-2)  

  Total, median (range) 4 (4-6) 3 (3-4) 3 (3-3) 3 (3-4)  

     *, p-value deemed statistically significant if < 0.05.  Representative of one-way    
     ANOVA with post-hoc multiple pair-wise comparisons to the control group by the  
     Student-Newman-Keuls Method. 
 

 

Peripheral blood lymphocyte populations and activation 
     To investigate whether using ZDV concurrently with SMX-TMP has any effect on 

peripheral lymphocyte populations, CD4+ T cell, CD8+ T cell, and CD19+ B cell 

percentages were determined in blood samples before and after vaccination.  Percent 

CD4+ T cells, CD8+ T cells, and CD19+ B cells of the total peripheral blood cell 

population (after red cell lysis) are reported in Figure 5.2 (panels A, C, and E, 

respectively).  No significant differences in cell populations in the three treatment groups 

compared to the control group were demonstrated.  Additionally, little difference is noted 

between pre- and post-vaccination data. 

     The activated phenotypes of these populations were also determined and reported in 

Figure 5.2.  Percentages of activated CD4+ cells (CD4+CD25+) and CD8+ cells 

(CD8+CD25+) were not significantly different before or after vaccination (panels B and 

D, respectively).  Of note, the percentage of activated CD8+ cells did show a trend 

toward a decrease in the combination group compared to the control group of subjects  
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Figure 5.2  Serum percentages of CD4+, CD8+, and CD19+ lymphocytes and their 
activated phenotypes before and after vaccination with influenza.  After being placed in 
one of four treatment groups:  ZDV, SMX-TMP, the combination of both, or neither 
(control), as detailed in Materials and Methods, blood was drawn from subjects 
immediately preceding influenza vaccination, and 20-25 days after vaccination.  
Percentage of total cells in the peripheral blood (after red cell lysis) was determined for 
CD4+ T cells, CD8+ T cells, and CD19+ B cells by flow cytometry (panels A, C, and E, 
respectively).  The percentage of these cells that were of the activated phenotype are 
given in panels B, D, and F:  CD4+CD25+ cells, CD8+CD25+ cells, and CD19+ cells 
having up-regulated either CD80 or CD86.  Statistical significance was not reached in 
any of the above data when comparing treatment groups to control groups using 
ANOVA for p < 0.05. 
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(p=0.108).  Percentage of activated B cells (CD19+ CD80+ and/or CD86+) also did not 

show any differences between groups (panel F). 

 

Pre-vaccination influenza-specific IgG was affected by combination drug 
exposure 
     We examined antibody titers of the subjects before receiving the influenza vaccine to 

determine if the drug treatments had any affect on pre-vaccination humoral immune 

status.  Positive IgG reference values (greater than 1.10) specific to either influenza A 

or B would be indicative of past or current infection or immunization.  Subjects in the 

ZDV only and ZDV plus SMX-TMP groups had influenza A-specific serum IgG values 

that were significantly lower than the control subjects (Figure 5.3A).  This trend was also 

present in the pre-vaccination influenza B-specific IgG values for each of these groups, 

although the data did not reach statistical significance (Figure 5.3B).  Mean reference 

values corresponded with a lower percentage of subjects in the positive range for 

influenza-specific IgG in the combination group (20%) versus the control group (100%).  

This difference was significantly different (p=0.048, Fisher’s Exact Test) (Table 5.2). 

     Because IgM is an indicator of recent or current infection or immunization, almost all 

patients tested influenza-IgM negative at pre-vaccination (Figure 5.3A and B).  

However, patient C04 tested positive to influenza A, and patient D03 tested positive to 

both influenza A and B.  This could indicate recent exposure in each of these 

individuals, although both reported no recent history of flu-like illness.  The mean 

influenza-specific IgM values were not different among the groups at the pre-vaccination 

timepoint (Figure 5.3C and D). 

 

Drug exposure affected both post-vaccination influenza-specific IgG and IgM 
     To determine the humoral response to the vaccine among the patient groups, we 

measured serum titers of IgG and IgM that were specific to influenza antigens within a 

window of 20-25 days post-vaccination.  Influenza-B specific IgG titers post-vaccination 

were significantly lower in both the SMX-TMP only and combination treatment groups 

compared to the control group (Figure 5.3B).  This trend was mirrored in the 

combination treatment group in response to influenza A, although the effect did not 
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Figure 5.3  Serum antibody titers.  After being placed in one of four treatment groups:  
ZDV, SMX-TMP, the combination of both, or neither (control), as detailed in Materials 
and Methods, blood was drawn from subjects immediately preceding influenza 
vaccination, and 20-25 days after vaccination.  Serum influenza A and B-specific IgG 
and IgM titers were obtained by ELISA.  *, statistically significant difference detected 
when compared to control group using ANOVA for p < 0.05. 
 

 

reach statistical significance (Figure 5.3A).  Only 60% of patients in the combination 

treatment group had a positive protective influenza A serum IgG response, compared to 

100% in each of the other groups (Table 5.2).  With regards to influenza B, serum IgG 

values only reached the protective range in 1 patient (20%) in the combination group 

versus 100% of the subjects in the control group, this difference being statistically 

significant (p=0.048, Fisher’s Exact Test). 

     Interestingly, post-vaccination serum IgM titers reached the positive range in 100% 

of patients in the combination group for both influenza A and B, versus 40% and 20% in 

the control group for influenza A and B, respectively (Table 5.2).  This corresponded 

with a trend of an increase in mean IgM values for both influenza A and B in the 
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combination group versus the control group (Figure 5.3C and D).  Due to a high degree 

of variability in IgM titers among the subjects, there differences did not reach statistical 

significance (Figure 5.3C and D). 

 

Table 5.2  Subject response to influenza vaccine. 

 Influenza A IgG Influenza B IgG Influenza A IgM Influenza B IgM 

Pre-vaccination Negative + Equivocal / Positive  (Percent Positive) 

  ZDV 2/4 (66) 5/1 (16) 6/0 (0) 6/0 (0) 

  SMX-TMP 1/6 (86) 3/4 (66) 7/0 (0) 7/0 (0) 

  Combination 4/1 (20)* 4/1 (20) 4/1 (20) 5/0 (0) 

  Control  0/5 (100) 1/4 (80) 4/1 (20) 4/1 (20) 

Post-vaccination  

  ZDV 0/6 (100) 2/4 (66) 3/3 (50) 5/1 (16) 

  SMX-TMP 0/7 (100) 4/3 (43) 3/4 (57) 5/2 (28) 

  Combination 2/3 (60) 4/1 (20)* 0/5 (100) 0/5 (100)* 

  Control 0/5 (100) 0/5 (100) 3/2 (40) 4/1 (20) 

    Influenza-specific antibody reference values were measured in the serum on the day    
    of vaccination (pre) and 20-25 days after vaccination (post).  The number of negative  
    (less than 0.89) plus equivocal (0.90-1.10) results are reported, along with the  
    number of subjects that tested positive (greater than 1.11) and the percentage that  
    tested positive.  *, p-value statistically significant if < 0.05 when treatment groups  
    were compared to the control group using Fisher’s Exact Test. 
 

 

 

Relationship between IgG response and CD4 count was affected by SMX-TMP 
exposure 
     Because antibody production, and specifically class switching, is reliant upon T and 

B cell interactions, and because T cells exhibit a positive correlation to antigen-specific 

antibody titers in patients infected with HIV, we compared the strength of this correlation 

among the different treatment groups before and after vaccination.  Influenza A and B-

specific serum IgG titers were graphed versus CD4+ cell numbers for the pre-

vaccination (Figure 5.4) and post-vaccination (Figure 5.5) blood samples.  Figure 5.4 
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depicts influenza A- (panels A and B) and influenza B- (panels C and D) specific pre-

vaccination IgG titers as a function of CD4+ cell count.  The combination treatment 

group was compared to the control group (panels A and C) and the 2 groups that 

received SMX-TMP were compared to the 2 groups that did not receive SMX-TMP 

(panels B and D). 

     Statistical analysis comparing regression lines for these figures are summarized in 

Table 5.3.  Regression analyses of the relationships between antibody response and 

CD4 count were compared for overall coincidence by calculating the F-statistic to 

determine if a significantly better fit to the data is obtained by fitting it with two separate  

 
Table 5.3  Regression data comparing IgG to CD4. 

Pre-vaccination n r F Crit F 

Influenza A Test Control Pooled Test Control Pooled   

  Combo vs Control 5 5 10 0.636 0.209 0.266 26.13 7.26 

  +/- SMX-TMP 11 11 22 0.080 0.162 0.140 1.69 4.56 

Influenza B  

  Combo vs Control 5 5 10 0.460 0.248 0.018 3.22 7.26 

  +/- SMX-TMP 11 11 22 0.144 0.219 0.187 0.05 4.56 

Post-vaccination 

Influenza A  

  Combo vs Control 5 5 10 0.840 0.804 0.331 8.72 7.26 

  +/- SMX-TMP 11 11 22 0.488 0.427 0.044 3.60 4.56 

Influenza B  

  Combo vs Control 5 5 10 0.237 0.460 0.422 11.70 7.26 

  +/- SMX-TMP 11 11 22 0.056 0.210 0.110 5.95 4.56 

     Regression analyses of the relationships between antibody response and CD4 count   
     were compared for overall coincidence by calculating the F-statistic to determine if a  
     significantly better fit to the data is obtained by fitting it with two separate lines  
     compared to fitting all of the data with one regression line (pooled).  This F-statistic  
     was then compared to the critical value F for p<0.025 with the 2,n-4 degrees of  
     freedom.  F values reaching statistical significance are shown in bold. 
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lines compared to fitting all of the data with one regression line (pooled).  Sample sizes 

(n) and r values are given for each analysis. 

     The relationship between influenza A-specific IgG response and CD4+ cell count was 

significantly different for the subjects receiving ZDV plus SMX-TMP compared to 

subjects in the control group (Figure 5.4A).  This difference corresponded with lower 

influenza A-specific IgG titers at the corresponding  
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Figure 5.4  Pre-vaccination IgG titer correlation with CD4 cell count.  After being placed 
in one of four treatment groups:  ZDV, SMX-TMP, the combination of both, or neither 
(control), as detailed in Materials and Methods, blood was drawn from subjects 
immediately preceding influenza vaccination, and serum influenza A and B-specific IgG 
titers were obtained by ELISA.  These titers were plotted versus the corresponding 
subject’s CD4 T cell count for influenza A (panels A and B) and influenza B (panels C 
and D) comparing the combination treatment group versus the control group (panels A 
and C) and comparing the groups that received SMX-TMP versus those that did not 
receive SMX-TMP (panels B and D).  **, statistically significant difference when 
comparing the F-statistic to the critical value of F for p<0.05 when testing regression 
lines for coincidence. 
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CD4+ T cell counts.  A difference in regression lines was not observed when 

comparing the combination treatment group versus the control group for influenza B 

(panel B), or when comparing subjects receiving SMX-TMP versus subjects not 

receiving SMX-TMP for influenza A or B (panels B and D, respectively). 

     Figure 5.5 depicts influenza A- (panels A and B) and B- (panels C and D) specific 

post-vaccination IgG responses as a function of CD4+ cell count, comparing the  
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Figure 5.5  Post-vaccination IgG correlation with CD4 cell count.  After being placed in 
one of four treatment groups:  ZDV, SMX-TMP, the combination of both, or neither 
(control), as detailed in Materials and Methods, subjects were vaccinated with the 
influenza vaccine, and after 20-25 days, blood was drawn and serum influenza A and B-
specific IgG titers were obtained by ELISA.  These titers were plotted versus the 
corresponding subject’s CD4 T cell count for influenza A (panels A and B) and influenza 
B (panels C and D) comparing the combination treatment group versus the control 
group (panels A and C) and comparing the groups that received SMX-TMP versus 
those that did not receive SMX-TMP (panels B and D).  **, statistically significant 
difference when comparing the F-statistic to the critical value of F for p<0.05 when 
testing regression lines for coincidence. 
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combination treatment group versus the control group (panels A and C) and comparing 

the groups that received SMX-TMP versus group that did not receive SMX-TMP (panels  

B and D).  Regression lines did not coincide with one another in panels A, C, or D.  We 

conclude that the relationship between serum IgG titer and CD4+ count was statistically  

different for subjects exposed to ZDV plus SMX-TMP versus control subjects for both 

influenza A and B (panels A and C, respectively).  Likewise, the relationship between 

serum IgG and CD4+ count was different among subjects in who received SMX-TMP 

and subjects who did not receive SMX-TMP for influenza B (panel D).  A significant 

difference was not observed in panel B.  These differences are shown in Table 5.3, with 

F values greater than the critical F values at p < 0.025. 

 

 

D.  CONCLUSIONS 
 

     In this chapter we have demonstrated the clinical impact of concurrent treatment with 

ZDV and SMX-TMP on immune response when using the influenza vaccine to 

challenge subjects infected with HIV.  Peripheral blood lymphocyte percentages were 

not affected, but despite a lack of differences in demographics between groups, the 

subjects in the combination treatment group had a lower mean influenza B-specific IgG 

titer in the serum compared to the control group in response to vaccination.  

Interestingly, exposure to the combination of agents for 21 days lowered influenza-

specific IgG titers at the pre-vaccination sampling as well.  Influenza-specific IgM serum 

titers were actually higher in the group of subjects exposed to ZDV plus SMX-TMP as 

compared to disease-severity matched control subjects 20-25 days post-vaccination.  

These differences could be indicative of a suppression of the humoral response, or they 

could be representative of an alteration in timing of this response. 

     The majority of the subjects tested positive for influenza-specific IgG, which likely 

corresponds to the fact that they each received the influenza vaccine during the 

previous year.  Although subjects reported having no flu-like illness during this year’s 

influenza season, recent exposure to the virus cannot be ruled out as a cause for 

protective IgG levels.  Because the assay used cannot distinguish between antigenic 
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differences from this year’s vaccination and those of the previous years, this is a 

potential source of error for our data.  Comparisons of pre-vaccination immune status 

should therefore be considered cautiously.  It would have been helpful to also obtain a 

blood sample to analyze IgG titers prior to SMX-TMP dosing.  Because this was not 

performed, a true baseline for influenza-specific IgG was not established. 

     This difference in antibody profile among the groups could indicate an impaired 

ability of the combination treatment subjects to effectively isotype switch antibody 

production.  B cells constitutively express the IgM isotype in response to an infectious 

challenge.  In order for the host to produce other isotypes, the process of isotype 

switching must occur, which will then allow cells to produce, among other isotypes, 

antigen-specific IgG.  This process is dependent on B cells interacting with T cells in 

secondary lymphoid tissues, and will be discussed in detail in Chapter 6.  Subjects 

receiving SMX-TMP had influenza-specific IgG responses that did not positively 

correlate with CD4+ counts to a similar degree as subjects that did not receive SMX-

TMP.  These results could indicate that the adverse effects of these drugs could be 

influencing humoral immune responses to a clinically significant degree. 

     One limitation to these data concerns the low level of power in statistical analyses 

comparing CD4 correlation with IgG responses due to the low numbers of subjects in 

each treatment group.  Tests between groups routinely had power levels below the 

desired power level of 0.80.  Although poorly-powered comparisons increase the 

likelihood of not detecting differences that exist between samples, we were able to 

detect statistical differences among our treatment groups in several instances.  Other 

differences may exist that were not identified, therefore negative results must be 

interpreted cautiously.  The percentages of subjects with positive influenza-specific 

antibody titers in the treatment groups were compared to the control group using 

Fisher’s Exact Test, but corrections for multiple comparisons were not utilized.  These 

statistical differences should therefore be interpreted cautiously.  A larger study with a 

higher number of subjects in each group, along with serial timepoints post-vaccination 

to more accurately describe antibody responses, is warranted. 

 
Copyright © David James Feola 2005 
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CHAPTER 6:  Discussion 
 

 

A.  RESULTS SUMMARY 
 
     Our investigations have characterized the toxicity caused by concurrent ZDV and 

SMX-TMP exposure.  We first began in mice, to define the nature of the toxicity in 

immune cell populations in primary and secondary lymphoid tissues, as well as a 

common site of infection, the lungs.  We also characterized the effects of this drug 

combination on the host’s response to an immune challenge, using pulmonary 

Pneumocystis as the model of infection.  Our investigations then turned in opposing 

directions.  In a series of in vitro experiments, we asked basic questions relating to the 

mechanism of the toxicity to B lymphocytes in the bone marrow.  Finally, we explored 

the clinical relevance of this drug-drug interaction to discover an altered humoral 

immune response to influenza vaccination in HIV-positive patients exposed to both ZDV 

and SMX-TMP.  Hypotheses generated from this work which will guide the future 

directions of this project are discussed below. 

     There are three potential reasons for the synergistic toxicity.  First, sequential sites of 

toxicity along the development pathway could cause synergy to occur, thereby 

amplifying the overall depletion.  Alternatively, combination exposure could cause 

additive or synergistic DNA damage, increasing the percentage of cells that suffer 

apoptosis.  And finally, one drug could alter the disposition of the other agent or its 

metabolites, thereby resulting in increased cytotoxicity.  These mechanisms are not 

mutually-exclusive of one another. 

 

 
B.  MECHANISM 
 
     Our mechanistic investigation of this drug-drug interaction is in its infancy.  There are 

two categorical elements to the potential cause of the increase in apoptosis observed.  

First, the presence of the combination of agents could be pharmacodynamically 
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responsible for the toxicity.  It is possible that each drug’s unique effect, whether on a 

molecular or cellular level, when combined cause this synergistic toxicity.  Second, the 

disposition of one agent or its metabolites could be affected by the presence of the 

other, thereby causing a localized pharmacokinetic interaction in the bone marrow.  We 

have conducted experiments to partially address each element, which are discussed in 

detail in the points that follow. 

 
Pharmacodynamics 
     Sequential sites of development.  By analyzing specific subpopulations of the B-

lineage, we demonstrated that subtypes in the more rapidly-dividing stages of 

development are the most sensitive to apoptosis induced by ZDV plus SMX-TMP.  B 

lymphocytes serve as an excellent line in which to study this phenomenon because of 

the extensive work performed by several groups to phenotypically characterize the 

discrete stages of B-lineage cells and the processes occurring at each of these stages.  

This allowed us to investigate the characteristics of toxicity to individual cell types as 

they mature, to consider whether cytotoxicity in sequential stages could cause the 

synergistic effect of B cell depletion. 

     We conclude here that the rapidly-dividing early pre-B cell fraction is a focal point of 

toxicity in mice exposed to the combination of ZDV and SMX-TMP as evidenced by the 

early block in early pre-B cell proliferation at day 7 of dosing followed by a significant 

reduction in late pre-B cells by dosing day 15.  In addition, by dosing day 21, the more 

immature cells of the pre-pro-B and pro-B phenotypes were depleted significantly in the 

single drug treatment groups as well as in the combination treatment group.  Therefore, 

fewer cells reached the proliferative pre-B stages in each of these three groups.  

However, only mice exposed to the combination of agents had overall B lymphocyte 

populations depleted in the bone marrow, demonstrating that only with pre-B cell burst-

inhibition is the overall number of B cells significantly affected.   Two separate sites of 

toxicity is likely a contributing factor to the synergistic effect observed.  The mechanism 

of toxicity at each point could be the same, because pro-B cells are also proliferating, 

albeit at a slower rate. 
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     An alternative mechanism of toxicity could be a direct affect on the stromal cells of 

the bone marrow.  This could lead to altered B cell development due to the vital support 

that stromal cells provide.  Stromal cells do not rapidly divide, so if indeed the 

mechanism of cell death is tied to proliferation, it is unlikely that the stromal cells are 

involved.  However, stromal cells do provide necessary signals to B lineage cells as 

they develop, the absence of which could induce apoptotic cell death.  The impact of 

combination drug therapy on stromal cells is unknown. 

 
     DNA damage.  From the analysis of our findings, we hypothesize that the apoptosis 

in B-lineage cells that results from exposure to ZDV plus SMX-TMP is due to 

overwhelming DNA damage.  We reach this premise for 3 reasons.  First, known 

mechanisms of bone marrow toxicity for each agent individually involve the inhibition of 

DNA replication.  The inhibition of thymidylate kinase by ZDV-monophosphate leading 

to the depletion of thymidine stores, combined with the inhibition of nucleic acid 

synthesis by SMX and TMP, could synergistically target highly proliferating early pre-B 

cells.  Furthermore, oxidative stress associated with SMX-NO and SMX-HA could 

contribute to DNA damage as well. 

     Second, we have shown that the effect is specific to the proliferation phases of the 

cell cycle.  At dosing day 7 we found a buildup in cell number in these phases in the 

early pre-B subset and a slight decrease in the number of late pre-B cells, suggesting 

that they are unable to progress to mitosis.  The fact that the percentage of cells in 

G0/G1 is reduced by the drug combination, in addition to the depletion observed in the 

late pre-B cell subset (and with extended dosing, in the early pre-B subset also), leads 

us to believe cells are arrested in the proliferative phases.  Cell cycle arrest that causes 

a buildup of cells in the S and G2 phases results from a failure to proceed through the 

“checkpoint” to the mitotic stage, prohibiting their division.  This step is regulated by the 

enzyme M phase kinase (228, 229).  Cells are prohibited to begin mitosis at this 

checkpoint if DNA is highly damaged during replication, or if the cell does not have the 

ability to adequately repair it (230, 231). 

     The third reason to consider this hypothesis is because the cell death caused by 

ZDV plus SMX-TMP appears to be caspase-independent.  While most forms of 
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apoptosis induction proceed through either the intrinsic or extrinsic pathways, both of 

which rely on signaling and effector caspases to induce programmed cell death, there 

exists a mechanism through which apoptosis can be induced without the requirement of 

caspases.  This caspase-independent apoptosis is triggered by DNA damage.  Our 

results in Chapter 3 support this notion, in that the cytotoxicity was not hindered by pan-

caspase inhibition. 

 

     Caspase-independent apoptosis.  Mitochondria play an important role in 

programmed cell death through the release of cytochrome c and apoptosis-inducing 

factor (AIF), which activate caspase-dependent and caspase-independent apoptosis 

mechanisms, respectively.  Poly(ADP-ribose) polymerase 1 (PARP-1) is an important 

activator of AIF release from the mitochondria.  DNA damage causes the up-regulation 

of PARP-1, which triggers the release of AIF (232).  Although caspases may be 

involved in facilitating cell death mediated by the release of AIF from the mitochondria, 

they are not required, as broad-spectrum caspase inhibitors do not prevent PARP-1-

mediated cell death (67).  In addition to PARP-1 up-regulation, AIF release from 

mitochondria can be stimulated by the intrinsic apoptosis pathway or by changes in 

mitochondrial membrane potential (233).  AIF entering the nucleus causes classic 

apoptotic features in the cell, including chromatin condensation, phosphatidylserine 

exposure on the cell surface, and mitochondrial membrane depolarization, all in the 

absence of caspase activation (67, 234, 235). 

     PARP-1 activation mediates cell death in ischemia-reperfusion injury, inflammatory 

injury, and reactive oxygen species-induced injury (236-239).  The effects of ZDV and 

SMX-TMP on DNA replication could be inducing an increase in PARP-1 cleavage 

leading to induction of apoptosis in B cells.   

     One caveat that does not support this premise is that ZDV has been demonstrated to 

cause apoptosis that is caspase-dependent (120, 240).  The mitochondrial damage 

associated with ZDV’s inhibition of DNA polymerase gamma causes cytochrome c 

release that triggers the intrinsic apoptosis cascade (120, 240).  Further work is needed 

to investigate each mechanism’s contribution to apoptosis when both ZDV and SMX-

TMP are present.  An ideal next step would be to determine mitochondrial release of 
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cytochrome c and AIF, as well as mitochondrial membrane potential and permeability, in 

the setting of combination drug exposure compared to appropriate controls. 

     Defining this more clearly would not only supply insight into the mechanism of this 

combined toxicity, but this information could also provide therapeutic potential to this 

drug combination with respects to cancer treatment.  Recently, several papers have 

given promise to ZDV and its ability to cause apoptosis to occur in several types of 

malignancy, including lymphoma, multiple myeloma, and parathyroid cancer cells (241-

244).  Combining this therapeutic effect with SMX-TMP has not been investigated.  This 

could be tested by exposing various B lymphoma cell lines to the combination of ZDV 

and SMX-TMP in vitro, and determining if apoptosis can be induced. 

 

Pharmacokinetics 
     Alteration of drug disposition.  The final possible mechanism that has been 

addressed is that of drug disposition alteration.  Because steady-state serum SMX 

concentrations were elevated in mice concurrently receiving ZDV, we became 

interested in the potential causes of this alteration, and the impact that it has on 

cytotoxicity in the bone marrow.  Pharmacokinetic investigations have not previously 

demonstrated interactions involving combination use of SMX-TMP and ZDV.  Although 

SMX-TMP caused a significant decrease in renal clearance of ZDV and its glucuronide 

metabolite in a study involving 9 patients infected with HIV, the overall net clearance of 

ZDV was not affected (158).  In another investigation, concomitant SMX-TMP therapy 

did not alter the AUC of ZDV in 16 HIV-positive patients (245).  To our knowledge, our 

data is the first to suggest that ZDV may affect the disposition of SMX. 

     Mrp4 expression induced by ZDV could be affecting GSH pools in lymphocytes, 

thereby increasing the intracellular concentrations of the oxidative metabolites of SMX 

(see Chapter 3).  This would then induce increased amounts of oxidative stress which 

could lead to DNA damage and caspase-independent apoptosis.  This could lead to the 

alteration in serum concentrations of SMX, as systemic clearance would be delayed by 

the sequestering of SMX in the intracellular compartment.  The fact that it takes 72 

hours of exposure for ZDV to contribute to the toxicity in our in vitro system could be 
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due to the time required to up-regulate Mrp4, although the timing of this phenomenon 

has not been defined (207). 

     Unfortunately, our study of this premise is in its infancy.  Confusing results were 

reached during our experiments with Mrp1-/- mice, from which no credible conclusions 

can be drawn at this time.  Future studies will involve intracellular concentration 

determinations of SMX, SMX-NO, and SMX-HA, as well as Mrp4 expression 

determination on B cells exposed to ZDV.  GSH concentrations, as well as GSH-SMX 

metabolite levels, will also be investigated.  It would also be interesting to determine if 

concurrent dosing of antioxidants would have an inhibitory effect on this drug-drug 

interaction. 

 

 

C.  EXPERIMENTAL CONSIDERATIONS 
 
Concentration-dependent cytotoxicity in vitro 
     The in vitro system utilized in this work is not representative of the B-lineage cellular 

makeup of the bone marrow in several ways.  In vivo, B-lineage cells are under the 

influence of many cytokines and cell-cell interactions as they mature.  With the 

exception of IL-7 (which we supplement), normal stromal cell interactions are absent 

(see Chapter 1 for a review).  The IL-7 therefore biases our population toward the early 

pre-B and late pre-B cell subtypes that are responsive to its stimulation to proliferate.  

This forces us to acknowledge that the results that we observe in vitro may not be 

entirely representative of in vivo phenomena.  However, as demonstrated in Chapter 2, 

these pre-B cell stages are the primary focus of the combined toxicity observed in vivo, 

so our culture system does have merit. 

     It is logical to think that this would make cells in our culture system exquisitely 

sensitive to apoptosis induction by our drug combination.  Although serum trough 

concentrations of the parent SMX reach over 100μg/ml in our in vivo experiments, the 

more relevant information is the intracellular SMX metabolite concentration changes 

inside B cells.  When ZDV exposure was lengthened to 72 hours, B lymphocytes in our 

culture system underwent rapid apoptosis induction with the addition of SMX-HA.  
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Intracellular concentrations of SMX-NO and SMX-HA are topics of ongoing 

investigation. 

     Comparing Figures 4.2B and 4.4D, we find the percentage of apoptotic B cells to be 

much higher at low SMX-HA concentrations (and well past its peak at higher SMX-HA 

concentrations) after exposure to ZDV for 72 hours (Figure 4.4D).  Because of this, 

apoptosis was best studied in the first few hours of SMX-HA exposure, as reflected in 

the caspase inhibitor experiments. 

 

Dosage relevance 
     The doses used in the animal experiments corresponded with doses used in studies 

by other investigators (1, 123, 246).  The doses administered to the mice in these 

experiments were approximately 8-10 times the doses given to humans for 

Pneumocystis pneumonia prophylaxis and HAART; however, the doses were more 

comparable to humans doses based on body surface area (80, 214).  Interspecies 

scaling in drug dosing has received much attention, as it is a continual problem when 

using animals to model and investigate human conditions (247, 248).  Mice have been 

shown to require much higher doses of cytotoxic drugs than humans to produce similar 

levels of cell death (249, 250).  The therapeutic range for SMX in humans is 50-200 

μg/ml in the serum according to the manufacturer’s information for SMX (Hoffman-La 

Roche, Basel, Switzerland).  The serum concentrations of SMX were measured in our 

mice to be between 45 and 95 μg/ml, which are comparable to those found in humans; 

although, the mean serum concentrations over the entire dosing interval would be much 

higher.  The extent to which the concentrations of SMX-HA, SMX-NO, and ZDV in 

mouse bone marrow correlate with humans treated with these agents is unknown.  

Furthermore, the presence of HIV infection would likely worsen the toxicity of this drug 

combination, due to the intracellular GSH reductions in HIV patients as outlined 

previously.  This issue makes it difficult to predict the clinical significance of such 

results, making human investigations extremely important. 
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D.  HOST RESPONSE 
 
Lymphocyte populations in secondary lymphoid tissues 
     Of note, cells in secondary lymphoid tissues were not studied for apoptotic 

characteristics associated with combination drug exposure.  Apoptotic frequency could 

be increased here as well, especially in an infectious response, as cells undergo rapid 

divisions as clonal expansions of T and B cells occur.  Along with previous reports by 

others, we show in Chapter 2 that ZDV plus SMX-TMP do not affect peripheral T cell 

numbers in the spleens of uninfected mice (1).  In the context of infection, however, total 

and activated CD4+ T cell frequencies were lower in the LN draining the site of infection 

(Chapter 4). 

     This could be either a direct effect on expanding T cell populations, or a secondary 

effect stemming from the B cell depletion.  Investigators have shown that T cell 

responses are dependent on interactions with B cells in secondary lymphoid organs in 

response to many infectious stimuli, including Salmonella, Bordetella pertussis vaccine, 

and Pneumocystis (219, 251, 252).  By evaluating antigen-specific cytokine secretion by 

CD4+ cells in normal and B cell-deficient mice, Linton et. al. determined that B cells play 

a critical role in regulating clonal expansion of CD4+ cells (252).  Ugrivovic et. al. 

suggest that T cell responses to Salmonella infection are dependent on B cell antigen 

presentation (251).  Additionally, our group demonstrated that T cell expansion and 

activation are reduced in TBLN and the lungs of B cell-deficient and CD40 knockout 

mice in response to Pneumocystis infection (219). 

 

Peripheral blood B lymphocytes 
     No clinical literature exists showing an effect of drug combination treatment on the 

number of B lymphocytes in the peripheral blood.  Consistent with this, we were unable 

to detect changes in the percentage of peripheral blood B cells in mice treated with the 

drug combination, or in patients receiving ZDV and SMX-TMP in our clinical study.  

However, this does not preclude the possibility that the peripheral B cell compartment is 

altered in patients in the lymph nodes and spleen. 
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     Interesting work has shown that IL-7 knockout mice, which have B lymphocyte 

production only during fetal and perinatal life, still maintain a stable pool of B cells in 

peripheral organs including the spleen (253).  However, these B cells consist only of the 

B1 and marginal zone phenotypes, accompanied by a 50-fold increase in the frequency 

of IgG secreting cells and increased serum antibody titers (253).  Folicular B cells, the 

opposite phenotype, responsible for responding to BCR stimulation to produce high 

affinity antibodies, are absent in these knockout mice (253).  This is extremely similar to 

patients with advance HIV disease that have altered antibody profiles as discussed 

earlier.  This applies clinically, in that bone marrow depletions of developing B cells may 

not be reflected in the peripheral blood of patients.  A future goal of this project is to 

determine the effect of ZDV and SMX-TMP on the various peripheral B cell subtypes. 

 
Immune response to Pneumocystis 
     It is not surprising that the abnormalities in the B cell compartment caused by ZDV 

plus SMX-TMP do not prohibit the clearance of Pneumocystis.  Pulmonary infection with 

Pneumocystis is cleared in normal mice, requiring the use of a combination of cellular 

and humoral components of adaptive immunity.  It has been shown that mice cannot 

mount an effective host response to Pneumocystis without the presence of CD4+ T cells 

(215, 216, 254).  Alveolar macrophages are the likely effector cells responsible for killing 

Pneumocystis since depletion of alveolar macrophages in rats resulted in the inability to 

clear infection (255).  Additionally, it has been demonstrated that mice deficient in B 

cells are also susceptible to Pneumocystis infection and are rendered unable to resolve 

a primary infection (217-219, 256).  In the present study, the numbers of infiltrating 

lymphocytes into the site of infection were not altered to a significant degree. 

     Several investigators have demonstrated that IgG produced by B cells facilitates the 

clearance of Pneumocystis in murine models of infection (257-261).  Work from our 

laboratory recently demonstrated, however, that Pneumocystis-specific IgG plays an 

important, but not critical, role in the defense against Pneumocystis (219).  This 

corresponds with the data presented in Chapter 4 in that the mice that received both 

ZDV and SMX-TMP were able to control the Pneumocystis burden in the lungs despite 

reduced serum IgG concentrations.  Our data indicate that clearance of Pneumocystis 
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was able to proceed to a certain point and then stalled.  This is consistent with other 

data from our laboratory in which we found a delay in the clearance of Pneumocystis in 

mice unable to produce Pneumocystis-specific isotype class-switched antibody (219).  

The fact that IgM (which is constitutively expressed) titers were not significantly reduced 

indicates that B cells from mice receiving both ZDV and SMX-TMP may have a 

decreased ability to isotype switch to produce IgG. 

 

Isotype switching 
     All naïve B lymphocytes express IgM and IgD constitutively on their cell surfaces.  

After interacting with T cells in T cell zones of the LN, B cells begin secreting IgM as 

well, especially in the initial stages of a primary immune response.  Some of these B 

cells migrate to a primary lymphoid follicle, where they form a germinal center (262).  

Classes of antibody other than IgM are only produced by B cells that undergo isotype 

switching, which occurs here in the germinal center.  Most antibody in the plasma is 

class-switched antibody of the IgG isotype.  This switch occurs as a result of B cells 

interacting with helper CD4+ T cells (263, 264).  B cells express a particular antigen on 

their surface in the context of MHC II.  This cross-links with the TCR of a T cell that has 

been primed with the same antigen.  CD40 on the B cell surface then ligates to CD40L 

on the surface of the T cell, providing a secondary signal to the B cells to stimulate class 

switching and antibody production (263, 264).  Additionally, cytokine excretion from T 

cells (IL-4, IL-5, and TGF-β) also stimulates B cells, to govern which isotypes are 

produced by that particular cell (265).  Combination exposure to ZDV and SMX-TMP 

could be influencing this interaction in some manner.  Although peripheral T cell 

numbers have not been shown to be affected, Freund et. al. did demonstrate an 

alteration in T cell function as a result of ZDV plus SMX-TMP exposure (1). 

     In addition to isotype switching, it is in the germinal center that antibody production 

also undergoes somatic hypermutation and affinity maturation, in order to produce 

antibody that displays a high affinity to a specific antigen (266, 267).  This occurs as 

cells are rapidly dividing.  The toxicity of ZDV plus SMX-TMP could have an impact on 

these germinal center cells as they divide.  This could account for the lower IgG titers 

that are observed both in the mice challenged with Pneumocystis, and in the HIV-
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infected subjects that were vaccinated against influenza.  This antibody with high affinity 

is the very type that is absent in patients with HIV.  This drug affect could be 

contributing to this condition in these patients.  Important future work will be to 

investigate the different B cell phenotypes in the context of infection, to determine 

whether ZDV plus SMX-TMP exposure results in selective depletion of follicular B cells. 

     Our data also suggests that IgG antibody titers from previous vaccination or infection 

are decreased by combination drug exposure.  Subjects in the combination drug group 

had significantly lower pre-vaccination IgG levels.  Many factors could have influenced 

this data since baseline titers before drug treatment were not measured.  These include 

varied exposure to influenza and variable CD4 counts when previously vaccinated.  

While this should be interpreted conservatively, this data could signify a depletion of 

plasma cells that have migrated from the germinal centers to the bone marrow, which 

take up residence there and are very long-lived (268).  These cells produce high-affinity, 

antigen-specific antibody for long periods.  Bone marrow toxicity to B lymphocytes could 

include these plasma cells, although the fact that they are not rapidly dividing could 

protect them.  This hypothesis will be tested in the future by analyzing this subtype of 

plasma cells that reside in the bone marrow.  Additionally, affects on B cell memory as a 

result of drug exposure would also be interesting to investigate. 

 

Response to vaccination 
     Immunoprotection is achieved with inactivated influenza vaccination in normal 

persons at a success rate of 70 to 90% (269).  This declines for HIV patients as CD4 

counts decrease (223-226, 270).  Kroon et. al. measured the proportion of HIV-positive 

patients with CD4 counts greater than 300 cells/μl that have protective antibody titers 

from influenza vaccination in a 3-year study (270).  At 30 days post-vaccination, 50 to 

100% of subjects had protective antibody titers for influenza A, compared to healthy 

controls with 81-100% protective titer rates (270).  Protective titer rates for influenza B 

were lower; between 64 and 75% versus 86 to 100% for healthy controls (270).  This 

compares with our overall response rates for serum IgG in our subjects of 91% for 

influenza A and 56% for influenza B (our subjects had CD4+ counts greater than 350 

cells/μl).  The difference in our study compared to the study conducted by Kroon et. al. 
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is that subjects cohorted to receive SMX-TMP in our investigation caused this group to 

have lower response rates of 83% and 33% for influenza A and B, respectively.  It 

appears that SMX-TMP exposure causes protective titers to be reached in a lower 

percentage of healthy HIV-infected patients. 

     Further study of this phenomenon in humans is warranted.  This data validates the 

pursuit of a large clinical trial to examine the immunosuppressive effects of concurrent 

ZDV and SMX-TMP therapy.  In addition to a larger sample size and patient 

randomization, the use of normal healthy volunteers would be useful.  This would isolate 

the effects of the drug combination, eliminating the confounding factors that are 

associated with HIV-infected patients, including affects of other medications (especially 

PI, which can decrease ZDV-induced apoptosis), variable CD4+ counts and function, 

and direct effects of viral immunosuppression.  The analysis of serial antibody titers 

would also be beneficial, because the differences we observed at a single point post-

vaccination could be only a reflection of altered timing of the response.  In addition, a 

vaccine to which the subjects were naïve (unlike influenza in most cases) would be 

more ideal, such as Haemophilus b vaccine.   

 

Clinical experience with SMX-TMP 
     Despite the fact that the clinical significance of this drug-drug interaction is unknown, 

experience dictates that SMX-TMP must be discontinued in patients due to decreases 

in overall white blood cells counts.  There is a subset of newly-diagnosed patients that, 

after beginning HAART, have viral loads that proceed to undetectable levels, but that do 

not have CD4+ T cell counts rebound to safe numbers as usually seen (271).  In one 

study, 17% of patients have a dissociation between viral load reduction to undetectable 

levels and a complete restoration (>50 cells/μl) after 6 months of HAART (271).  Formal 

investigation of whether discontinuation of SMX-TMP in these patients improves CD4+ T 

cell numbers has not been conducted. 
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E.  CONCLUSIONS 
 

     We conclude that clinicians should consider this drug-drug interaction when treating 

patients with ZDV and SMX-TMP concurrently.  Our findings demonstrate that the host 

response to infectious challenge is altered in mice and humans having received these 

agents in combination.  This suppression of humoral immunity could affect morbidity 

and mortality of patients infected with HIV who receive both of these agents.  This 

iatrogenic effect, if clinically significant, could have an impact on outcomes to other 

opportunistic and true pathogens that afflict this patient population.  Additional 

antiretrovirals are available which cause much less bone marrow toxicity than ZDV, and 

patients at high risk of bone marrow suppression could potentially benefit from 

alternative agents in the treatment of their chronic HIV infection.  Likewise, clinicians 

may wish to consider alternatives to SMX-TMP for the treatment and prophylaxis of 

PCP (such as TMP alone or aerosolized pentamadine) in specific patients. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © David James Feola 2005 



www.manaraa.com

 106

REFERENCES 
 

1. Freund, Y. R., L. Dousman, J. T. MacGregor, and N. Mohagheghpour. 2000. Oral 

treatment with trimethoprim-sulfamethoxazole and zidovudine suppresses murine 

accessory cell-dependent immune responses. Toxicol Sci 55:335. 

2. McDonnell, P. J., and M. R. Jacobs. 2002. Hospital admissions resulting from 

preventable adverse drug reactions. Ann Pharmacother 36:1331. 

3. Colt, H. G., and A. P. Shapiro. 1989. Drug-induced illness as a cause for 

admission to a community hospital. J Am Geriatr Soc 37:323. 

4. Miller, R. R. 1974. Hospital admissions due to adverse drug reactions. A report 

from the Boston Collaborative Drug Surveillance Program. Arch Intern Med 

134:219. 

5. Bates, D. W., D. J. Cullen, N. Laird, L. A. Petersen, S. D. Small, D. Servi, G. 

Laffel, B. J. Sweitzer, B. F. Shea, R. Hallisey, and et al. 1995. Incidence of 

adverse drug events and potential adverse drug events. Implications for 

prevention. ADE Prevention Study Group. Jama 274:29. 

6. Piscitelli, S. C., and K. D. Gallicano. 2001. Interactions among drugs for HIV and 

opportunistic infections. N Engl J Med 344:984. 

7. Stein, D. S., J. A. Korvick, and S. H. Vermund. 1992. CD4+ lymphocyte cell 

enumeration for prediction of clinical course of human immunodeficiency virus 

disease: a review. J Infect Dis 165:352. 

8. Levy, J. A., A. D. Hoffman, S. M. Kramer, J. A. Landis, J. M. Shimabukuro, and L. 

S. Oshiro. 1984. Isolation of lymphocytopathic retroviruses from San Francisco 

patients with AIDS. Science 225:840. 

9. Popovic, M., M. G. Sarngadharan, E. Read, and R. C. Gallo. 1984. Detection, 

isolation, and continuous production of cytopathic retroviruses (HTLV-III) from 

patients with AIDS and pre-AIDS. Science 224:497. 

10. Lifson, J. D., G. R. Reyes, M. S. McGrath, B. S. Stein, and E. G. Engleman. 

1986. AIDS retrovirus induced cytopathology: giant cell formation and 

involvement of CD4 antigen. Science 232:1123. 



www.manaraa.com

 107

11. Muro-Cacho, C. A., G. Pantaleo, and A. S. Fauci. 1995. Analysis of apoptosis in 

lymph nodes of HIV-infected persons. Intensity of apoptosis correlates with the 

general state of activation of the lymphoid tissue and not with stage of disease or 

viral burden. J Immunol 154:5555. 

12. Fauci, A. S. 1996. Host factors in the pathogenesis of HIV disease. Antibiot 

Chemother 48:4. 

13. Yang, O. O., S. A. Kalams, M. Rosenzweig, A. Trocha, N. Jones, M. Koziel, B. D. 

Walker, and R. P. Johnson. 1996. Efficient lysis of human immunodeficiency 

virus type 1-infected cells by cytotoxic T lymphocytes. J Virol 70:5799. 

14. Cocchi, F., A. L. DeVico, A. Garzino-Demo, S. K. Arya, R. C. Gallo, and P. 

Lusso. 1995. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the 

major HIV-suppressive factors produced by CD8+ T cells. Science 270:1811. 

15. Deng, H., R. Liu, W. Ellmeier, S. Choe, D. Unutmaz, M. Burkhart, P. Di Marzio, 

S. Marmon, R. E. Sutton, C. M. Hill, C. B. Davis, S. C. Peiper, T. J. Schall, D. R. 

Littman, and N. R. Landau. 1996. Identification of a major co-receptor for primary 

isolates of HIV-1. Nature 381:661. 

16. Dragic, T., V. Litwin, G. P. Allaway, S. R. Martin, Y. Huang, K. A. Nagashima, C. 

Cayanan, P. J. Maddon, R. A. Koup, J. P. Moore, and W. A. Paxton. 1996. HIV-1 

entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 

381:667. 

17. Alkhatib, G., C. Combadiere, C. C. Broder, Y. Feng, P. E. Kennedy, P. M. 

Murphy, and E. A. Berger. 1996. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta 

receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955. 

18. Walker, B. D., S. Chakrabarti, B. Moss, T. J. Paradis, T. Flynn, A. G. Durno, R. S. 

Blumberg, J. C. Kaplan, M. S. Hirsch, and R. T. Schooley. 1987. HIV-specific 

cytotoxic T lymphocytes in seropositive individuals. Nature 328:345. 

19. Hoffenbach, A., P. Langlade-Demoyen, G. Dadaglio, E. Vilmer, F. Michel, C. 

Mayaud, B. Autran, and F. Plata. 1989. Unusually high frequencies of HIV-

specific cytotoxic T lymphocytes in humans. J Immunol 142:452. 

20. Pantaleo, G., C. Graziosi, and A. S. Fauci. 1993. The role of lymphoid organs in 

the pathogenesis of HIV infection. Semin Immunol 5:157. 



www.manaraa.com

 108

21. Cease, K. B., H. Margalit, J. L. Cornette, S. D. Putney, W. G. Robey, C. Ouyang, 

H. Z. Streicher, P. J. Fischinger, R. C. Gallo, C. DeLisi, and et al. 1987. Helper T-

cell antigenic site identification in the acquired immunodeficiency syndrome virus 

gp120 envelope protein and induction of immunity in mice to the native protein 

using a 16-residue synthetic peptide. Proc Natl Acad Sci U S A 84:4249. 

22. Kinter, A. L., M. Ostrowski, D. Goletti, A. Oliva, D. Weissman, K. Gantt, E. Hardy, 

R. Jackson, L. Ehler, and A. S. Fauci. 1996. HIV replication in CD4+ T cells of 

HIV-infected individuals is regulated by a balance between the viral suppressive 

effects of endogenous beta-chemokines and the viral inductive effects of other 

endogenous cytokines. Proc Natl Acad Sci U S A 93:14076. 

23. Sodroski, J., W. C. Goh, C. Rosen, K. Campbell, and W. A. Haseltine. 1986. Role 

of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature 

322:470. 

24. Weinhold, K. J., H. K. Lyerly, S. D. Stanley, A. A. Austin, T. J. Matthews, and D. 

P. Bolognesi. 1989. HIV-1 GP120-mediated immune suppression and 

lymphocyte destruction in the absence of viral infection. J Immunol 142:3091. 

25. Manca, F., J. A. Habeshaw, and A. G. Dalgleish. 1990. HIV envelope 

glycoprotein, antigen specific T-cell responses, and soluble CD4. Lancet 

335:811. 

26. Banda, N. K., J. Bernier, D. K. Kurahara, R. Kurrle, N. Haigwood, R. P. Sekaly, 

and T. H. Finkel. 1992. Crosslinking CD4 by human immunodeficiency virus 

gp120 primes T cells for activation-induced apoptosis. J Exp Med 176:1099. 

27. Folks, T. M., S. W. Kessler, J. M. Orenstein, J. S. Justement, E. S. Jaffe, and A. 

S. Fauci. 1988. Infection and replication of HIV-1 in purified progenitor cells of 

normal human bone marrow. Science 242:919. 

28. Steinberg, H. N., C. S. Crumpacker, and P. A. Chatis. 1991. In vitro suppression 

of normal human bone marrow progenitor cells by human immunodeficiency 

virus. J Virol 65:1765. 

29. Kagi, D., P. Seiler, J. Pavlovic, B. Ledermann, K. Burki, R. M. Zinkernagel, and 

H. Hengartner. 1995. The roles of perforin- and Fas-dependent cytotoxicity in 

protection against cytopathic and noncytopathic viruses. Eur J Immunol 25:3256. 



www.manaraa.com

 109

30. Groux, H., G. Torpier, D. Monte, Y. Mouton, A. Capron, and J. C. Ameisen. 1992. 

Activation-induced death by apoptosis in CD4+ T cells from human 

immunodeficiency virus-infected asymptomatic individuals. J Exp Med 175:331. 

31. Meyaard, L., S. A. Otto, R. R. Jonker, M. J. Mijnster, R. P. Keet, and F. Miedema. 

1992. Programmed death of T cells in HIV-1 infection. Science 257:217. 

32. Perfettini, J. L., M. Castedo, T. Roumier, K. Andreau, R. Nardacci, M. Piacentini, 

and G. Kroemer. 2005. Mechanisms of apoptosis induction by the HIV-1 

envelope. Cell Death Differ 12 Suppl 1:916. 

33. Pantaleo, G., and A. S. Fauci. 1996. Immunopathogenesis of HIV infection. Annu 

Rev Microbiol 50:825. 

34. Clark, S. J., M. S. Saag, W. D. Decker, S. Campbell-Hill, J. L. Roberson, P. J. 

Veldkamp, J. C. Kappes, B. H. Hahn, and G. M. Shaw. 1991. High titers of 

cytopathic virus in plasma of patients with symptomatic primary HIV-1 infection. 

N Engl J Med 324:954. 

35. Sei, Y., P. H. Tsang, F. N. Chu, I. Wallace, J. P. Roboz, P. S. Sarin, and J. G. 

Bekesi. 1989. Inverse relationship between HIV-1 p24 antigenemia, anti-p24 

antibody and neutralizing antibody response in all stages of HIV-1 infection. 

Immunol Lett 20:223. 

36. Lathey, J. L., I. C. Marschner, B. Kabat, and S. A. Spector. 1997. Deterioration of 

detectable human immunodeficiency virus serum p24 antigen in samples stored 

for batch testing. J Clin Microbiol 35:631. 

37. Matthews, T. J., A. J. Langlois, W. G. Robey, N. T. Chang, R. C. Gallo, P. J. 

Fischinger, and D. P. Bolognesi. 1986. Restricted neutralization of divergent 

human T-lymphotropic virus type III isolates by antibodies to the major envelope 

glycoprotein. Proc Natl Acad Sci U S A 83:9709. 

38. Rusche, J. R., K. Javaherian, C. McDanal, J. Petro, D. L. Lynn, R. Grimaila, A. 

Langlois, R. C. Gallo, L. O. Arthur, P. J. Fischinger, and et al. 1988. Antibodies 

that inhibit fusion of human immunodeficiency virus-infected cells bind a 24-

amino acid sequence of the viral envelope, gp120. Proc Natl Acad Sci U S A 

85:3198. 



www.manaraa.com

 110

39. Wu, L., N. P. Gerard, R. Wyatt, H. Choe, C. Parolin, N. Ruffing, A. Borsetti, A. A. 

Cardoso, E. Desjardin, W. Newman, C. Gerard, and J. Sodroski. 1996. CD4-

induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine 

receptor CCR-5. Nature 384:179. 

40. Pantaleo, G., S. Menzo, M. Vaccarezza, C. Graziosi, O. J. Cohen, J. F. 

Demarest, D. Montefiori, J. M. Orenstein, C. Fox, L. K. Schrager, and et al. 1995. 

Studies in subjects with long-term nonprogressive human immunodeficiency 

virus infection. N Engl J Med 332:209. 

41. Cao, Y., L. Qin, L. Zhang, J. Safrit, and D. D. Ho. 1995. Virologic and 

immunologic characterization of long-term survivors of human immunodeficiency 

virus type 1 infection. N Engl J Med 332:201. 

42. Robinson, W. E., Jr., D. C. Montefiori, and W. M. Mitchell. 1988. Antibody-

dependent enhancement of human immunodeficiency virus type 1 infection. 

Lancet 1:790. 

43. Robinson, W. E., Jr., T. Kawamura, M. K. Gorny, D. Lake, J. Y. Xu, Y. 

Matsumoto, T. Sugano, Y. Masuho, W. M. Mitchell, E. Hersh, and et al. 1990. 

Human monoclonal antibodies to the human immunodeficiency virus type 1 (HIV-

1) transmembrane glycoprotein gp41 enhance HIV-1 infection in vitro. Proc Natl 

Acad Sci U S A 87:3185. 

44. Martinez-Maza, O., E. Crabb, R. T. Mitsuyasu, J. L. Fahey, and J. V. Giorgi. 

1987. Infection with the human immunodeficiency virus (HIV) is associated with 

an in vivo increase in B lymphocyte activation and immaturity. J Immunol 

138:3720. 

45. Lane, H. C., H. Masur, L. C. Edgar, G. Whalen, A. H. Rook, and A. S. Fauci. 

1983. Abnormalities of B-cell activation and immunoregulation in patients with the 

acquired immunodeficiency syndrome. N Engl J Med 309:453. 

46. Ammann, A. J., G. Schiffman, D. Abrams, P. Volberding, J. Ziegler, and M. 

Conant. 1984. B-cell immunodeficiency in acquired immune deficiency 

syndrome. Jama 251:1447. 

47. Simberkoff, M. S., W. El Sadr, G. Schiffman, and J. J. Rahal, Jr. 1984. 

Streptococcus pneumoniae infections and bacteremia in patients with acquired 



www.manaraa.com

 111

immune deficiency syndrome, with report of a pneumococcal vaccine failure. Am 

Rev Respir Dis 130:1174. 

48. Bernstein, L. J., H. D. Ochs, R. J. Wedgwood, and A. Rubinstein. 1985. Defective 

humoral immunity in pediatric acquired immune deficiency syndrome. J Pediatr 

107:352. 

49. Ballet, J. J., G. Sulcebe, L. J. Couderc, F. Danon, C. Rabian, M. Lathrop, J. P. 

Clauvel, and M. Seligmann. 1987. Impaired anti-pneumococcal antibody 

response in patients with AIDS-related persistent generalized lymphadenopathy. 

Clin Exp Immunol 68:479. 

50. Janoff, E. N., J. M. Douglas, Jr., M. Gabriel, M. J. Blaser, A. J. Davidson, D. L. 

Cohn, and F. N. Judson. 1988. Class-specific antibody response to 

pneumococcal capsular polysaccharides in men infected with human 

immunodeficiency virus type 1. J Infect Dis 158:983. 

51. Dawood, M. R., B. Conway, P. Patenaude, F. Janmohamed, J. S. Montaner, M. 

V. O'Shaughnessy, and G. W. Hammond. 1998. Association of phenotypic 

changes in B cell lymphocytes and plasma viral load in human immunodeficiency 

virus-infected patients. J Clin Immunol 18:235. 

52. Wolthers, K. C., S. A. Otto, S. M. Lens, R. A. Van Lier, F. Miedema, and L. 

Meyaard. 1997. Functional B cell abnormalities in HIV type 1 infection: role of 

CD40L and CD70. AIDS Res Hum Retroviruses 13:1023. 

53. De Milito, A., C. Morch, A. Sonnerborg, and F. Chiodi. 2001. Loss of memory 

(CD27) B lymphocytes in HIV-1 infection. Aids 15:957. 

54. Heffernan, R. T., N. L. Barrett, K. M. Gallagher, J. L. Hadler, L. H. Harrison, A. L. 

Reingold, K. Khoshnood, T. R. Holford, and A. Schuchat. 2005. Declining 

incidence of invasive Streptococcus pneumoniae infections among persons with 

AIDS in an era of highly active antiretroviral therapy, 1995-2000. J Infect Dis 

191:2038. 

55. Miller, R. 1996. HIV-associated respiratory diseases. Lancet 348:307. 

56. Katlama, C., and G. M. Dickinson. 1993. Update on opportunistic infections. Aids 

7 Suppl 1:S185. 



www.manaraa.com

 112

57. Hirschtick, R. E., J. Glassroth, M. C. Jordan, T. C. Wilcosky, J. M. Wallace, P. A. 

Kvale, N. Markowitz, M. J. Rosen, B. T. Mangura, and P. C. Hopewell. 1995. 

Bacterial pneumonia in persons infected with the human immunodeficiency virus. 

Pulmonary Complications of HIV Infection Study Group. N Engl J Med 333:845. 

58. Clarke, P. G. 1990. Developmental cell death: morphological diversity and 

multiple mechanisms. Anat Embryol (Berl) 181:195. 

59. Martin, S. J., D. M. Finucane, G. P. Amarante-Mendes, G. A. O'Brien, and D. R. 

Green. 1996. Phosphatidylserine externalization during CD95-induced apoptosis 

of cells and cytoplasts requires ICE/CED-3 protease activity. J Biol Chem 

271:28753. 

60. Yuan, J., E. Angelucci, G. Lucarelli, M. Aljurf, L. M. Snyder, C. R. Kiefer, L. Ma, 

and S. L. Schrier. 1993. Accelerated programmed cell death (apoptosis) in 

erythroid precursors of patients with severe beta-thalassemia (Cooley's anemia). 

Blood 82:374. 

61. Savill, J. S., P. M. Henson, and C. Haslett. 1989. Phagocytosis of aged human 

neutrophils by macrophages is mediated by a novel "charge-sensitive" 

recognition mechanism. J Clin Invest 84:1518. 

62. Fadok, V. A., D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott, and P. M. 

Henson. 1998. Macrophages that have ingested apoptotic cells in vitro inhibit 

proinflammatory cytokine production through autocrine/paracrine mechanisms 

involving TGF-beta, PGE2, and PAF. J Clin Invest 101:890. 

63. Brancolini, C., M. Benedetti, and C. Schneider. 1995. Microfilament 

reorganization during apoptosis: the role of Gas2, a possible substrate for ICE-

like proteases. Embo J 14:5179. 

64. Darmon, A. J., D. W. Nicholson, and R. C. Bleackley. 1995. Activation of the 

apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 

377:446. 

65. Nicholson, D. W., A. Ali, N. A. Thornberry, J. P. Vaillancourt, C. K. Ding, M. 

Gallant, Y. Gareau, P. R. Griffin, M. Labelle, Y. A. Lazebnik, and et al. 1995. 

Identification and inhibition of the ICE/CED-3 protease necessary for mammalian 

apoptosis. Nature 376:37. 



www.manaraa.com

 113

66. Salvesen, G. S., and V. M. Dixit. 1997. Caspases: intracellular signaling by 

proteolysis. Cell 91:443. 

67. Yu, S. W., H. Wang, M. F. Poitras, C. Coombs, W. J. Bowers, H. J. Federoff, G. 

G. Poirier, T. M. Dawson, and V. L. Dawson. 2002. Mediation of poly(ADP-

ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 

297:259. 

68. Majno, G., and I. Joris. 1995. Apoptosis, oncosis, and necrosis. An overview of 

cell death. Am J Pathol 146:3. 

69. Pitti, R. M., S. A. Marsters, S. Ruppert, C. J. Donahue, A. Moore, and A. 

Ashkenazi. 1996. Induction of apoptosis by Apo-2 ligand, a new member of the 

tumor necrosis factor cytokine family. J Biol Chem 271:12687. 

70. Pan, G., K. O'Rourke, A. M. Chinnaiyan, R. Gentz, R. Ebner, J. Ni, and V. M. 

Dixit. 1997. The receptor for the cytotoxic ligand TRAIL. Science 276:111. 

71. Nagata, S., and T. Suda. 1995. Fas and Fas ligand: lpr and gld mutations. 

Immunol Today 16:39. 

72. Rokhlin, O. W., R. A. Glover, and M. B. Cohen. 1998. Fas-mediated apoptosis in 

human prostatic carcinoma cell lines occurs via activation of caspase-8 and 

caspase-7. Cancer Res 58:5870. 

73. Kischkel, F. C., S. Hellbardt, I. Behrmann, M. Germer, M. Pawlita, P. H. 

Krammer, and M. E. Peter. 1995. Cytotoxicity-dependent APO-1 (Fas/CD95)-

associated proteins form a death-inducing signaling complex (DISC) with the 

receptor. Embo J 14:5579. 

74. Korsmeyer, S. J., M. C. Wei, M. Saito, S. Weiler, K. J. Oh, and P. H. Schlesinger. 

2000. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into 

pores that result in the release of cytochrome c. Cell Death Differ 7:1166. 

75. Alimonti, J. B., L. Shi, P. K. Baijal, and A. H. Greenberg. 2001. Granzyme B 

induces BID-mediated cytochrome c release and mitochondrial permeability 

transition. J Biol Chem 276:6974. 

76. Gross, A. 2001. BCL-2 proteins: regulators of the mitochondrial apoptotic 

program. IUBMB Life 52:231. 



www.manaraa.com

 114

77. Slee, E. A., M. T. Harte, R. M. Kluck, B. B. Wolf, C. A. Casiano, D. D. Newmeyer, 

H. G. Wang, J. C. Reed, D. W. Nicholson, E. S. Alnemri, D. R. Green, and S. J. 

Martin. 1999. Ordering the cytochrome c-initiated caspase cascade: hierarchical 

activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent 

manner. J Cell Biol 144:281. 

78. Zou, H., Y. Li, X. Liu, and X. Wang. 1999. An APAF-1.cytochrome c multimeric 

complex is a functional apoptosome that activates procaspase-9. J Biol Chem 

274:11549. 

79. Fischl, M. A. 1999. Antiretroviral therapy in 1999 for antiretroviral-naive 

individuals with HIV infection. Aids 13 Suppl 1:S49. 

80. Gulick, R. M., J. W. Mellors, D. Havlir, J. J. Eron, A. Meibohm, J. H. Condra, F. T. 

Valentine, D. McMahon, C. Gonzalez, L. Jonas, E. A. Emini, J. A. Chodakewitz, 

R. Isaacs, and D. D. Richman. 2000. 3-year suppression of HIV viremia with 

indinavir, zidovudine, and lamivudine. Ann Intern Med 133:35. 

81. Montaner, J. S., R. Hogg, J. Raboud, R. Harrigan, and M. O'Shaughnessy. 1998. 

Antiretroviral treatment in 1998. Lancet 352:1919. 

82. Autran, B., G. Carcelain, T. S. Li, C. Blanc, D. Mathez, R. Tubiana, C. Katlama, 

P. Debre, and J. Leibowitch. 1997. Positive effects of combined antiretroviral 

therapy on CD4+ T cell homeostasis and function in advanced HIV disease. 

Science 277:112. 

83. Lederman, M. M., E. Connick, A. Landay, D. R. Kuritzkes, J. Spritzler, M. St 

Clair, B. L. Kotzin, L. Fox, M. H. Chiozzi, J. M. Leonard, F. Rousseau, M. Wade, 

J. D. Roe, A. Martinez, and H. Kessler. 1998. Immunologic responses associated 

with 12 weeks of combination antiretroviral therapy consisting of zidovudine, 

lamivudine, and ritonavir: results of AIDS Clinical Trials Group Protocol 315. J 

Infect Dis 178:70. 

84. Gulick, R. M., J. W. Mellors, D. Havlir, J. J. Eron, C. Gonzalez, D. McMahon, L. 

Jonas, A. Meibohm, D. Holder, W. A. Schleif, J. H. Condra, E. A. Emini, R. 

Isaacs, J. A. Chodakewitz, and D. D. Richman. 1998. Simultaneous vs sequential 

initiation of therapy with indinavir, zidovudine, and lamivudine for HIV-1 infection: 

100-week follow-up. Jama 280:35. 



www.manaraa.com

 115

85. Hammer, S. M., K. E. Squires, M. D. Hughes, J. M. Grimes, L. M. Demeter, J. S. 

Currier, J. J. Eron, Jr., J. E. Feinberg, H. H. Balfour, Jr., L. R. Deyton, J. A. 

Chodakewitz, and M. A. Fischl. 1997. A controlled trial of two nucleoside 

analogues plus indinavir in persons with human immunodeficiency virus infection 

and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials 

Group 320 Study Team. N Engl J Med 337:725. 

86. Lu, W., and J. M. Andrieu. 2000. HIV protease inhibitors restore impaired T-cell 

proliferative response in vivo and in vitro: a viral-suppression-independent 

mechanism. Blood 96:250. 

87. Mathez, D., P. Bagnarelli, I. Gorin, C. Katlama, G. Pialoux, G. Saimot, P. 

Tubiana, P. De Truchis, J. P. Chauvin, R. Mills, R. Rode, M. Clementi, and J. 

Leibowitch. 1997. Reductions in viral load and increases in T lymphocyte 

numbers in treatment-naive patients with advanced HIV-1 infection treated with 

ritonavir, zidovudine and zalcitabine triple therapy. Antivir Ther 2:175. 

88. Murphy, E. L., A. C. Collier, L. A. Kalish, S. F. Assmann, M. F. Para, T. P. 

Flanigan, P. N. Kumar, L. Mintz, F. R. Wallach, and G. J. Nemo. 2001. Highly 

active antiretroviral therapy decreases mortality and morbidity in patients with 

advanced HIV disease. Ann Intern Med 135:17. 

89. Verbraak, F. D., R. Boom, P. M. Wertheim-van Dillen, G. J. van den Horn, A. 

Kijlstra, and M. D. de Smet. 1999. Influence of highly active antiretroviral therapy 

on the development of CMV disease in HIV positive patients at high risk for CMV 

disease. Br J Ophthalmol 83:1186. 

90. Isgro, A., I. Mezzaroma, A. Aiuti, A. Fantauzzi, M. Pinti, A. Cossarizza, and F. 

Aiuti. 2004. Decreased apoptosis of bone marrow progenitor cells in HIV-1-

infected patients during highly active antiretroviral therapy. Aids 18:1335. 

91. Sloand, E. M., P. N. Kumar, S. Kim, A. Chaudhuri, F. F. Weichold, and N. S. 

Young. 1999. Human immunodeficiency virus type 1 protease inhibitor modulates 

activation of peripheral blood CD4(+) T cells and decreases their susceptibility to 

apoptosis in vitro and in vivo. Blood 94:1021. 

92. Katsikis, P. D., M. E. Garcia-Ojeda, J. F. Torres-Roca, I. M. Tijoe, C. A. Smith, 

and L. A. Herzenberg. 1997. Interleukin-1 beta converting enzyme-like protease 



www.manaraa.com

 116

involvement in Fas-induced and activation-induced peripheral blood T cell 

apoptosis in HIV infection. TNF-related apoptosis-inducing ligand can mediate 

activation-induced T cell death in HIV infection. J Exp Med 186:1365. 

93. Sloand, E. M., J. Maciejewski, P. Kumar, S. Kim, A. Chaudhuri, and N. Young. 

2000. Protease inhibitors stimulate hematopoiesis and decrease apoptosis and 

ICE expression in CD34(+) cells. Blood 96:2735. 

94. Clifford, G. M., J. Polesel, M. Rickenbach, L. Dal Maso, O. Keiser, A. Kofler, E. 

Rapiti, F. Levi, G. Jundt, T. Fisch, A. Bordoni, D. De Weck, and S. Franceschi. 

2005. Cancer risk in the Swiss HIV Cohort Study: associations with 

immunodeficiency, smoking, and highly active antiretroviral therapy. J Natl 

Cancer Inst 97:425. 

95. Cheung, T. W. 2004. AIDS-related cancer in the era of highly active antiretroviral 

therapy (HAART): a model of the interplay of the immune system, virus, and 

cancer. "On the offensive--the Trojan Horse is being destroyed"--Part B: 

Malignant lymphoma. Cancer Invest 22:787. 

96. Jaresko, G. S. 1999. Etiology of neutropenia in HIV-infected patients. Am J 

Health Syst Pharm 56 Suppl 5:S5. 

97. Castella, A., T. S. Croxson, D. Mildvan, D. H. Witt, and R. Zalusky. 1985. The 

bone marrow in AIDS. A histologic, hematologic, and microbiologic study. Am J 

Clin Pathol 84:425. 

98. Sun, N. C., P. Shapshak, N. A. Lachant, M. Y. Hsu, L. Sieger, P. Schmid, G. 

Beall, and D. T. Imagawa. 1989. Bone marrow examination in patients with AIDS 

and AIDS-related complex (ARC). Morphologic and in situ hybridization studies. 

Am J Clin Pathol 92:589. 

99. Aoki, Y., and G. Tosato. 2004. Neoplastic conditions in the context of HIV-1 

infection. Curr HIV Res 2:343. 

100. Volberding, P. A., S. W. Lagakos, M. A. Koch, C. Pettinelli, M. W. Myers, D. K. 

Booth, H. H. Balfour, Jr., R. C. Reichman, J. A. Bartlett, M. S. Hirsch, and et al. 

1990. Zidovudine in asymptomatic human immunodeficiency virus infection. A 

controlled trial in persons with fewer than 500 CD4-positive cells per cubic 



www.manaraa.com

 117

millimeter. The AIDS Clinical Trials Group of the National Institute of Allergy and 

Infectious Diseases. N Engl J Med 322:941. 

101. Fischl, M. A., D. D. Richman, N. Hansen, A. C. Collier, J. T. Carey, M. F. Para, 

W. D. Hardy, R. Dolin, W. G. Powderly, J. D. Allan, and et al. 1990. The safety 

and efficacy of zidovudine (AZT) in the treatment of subjects with mildly 

symptomatic human immunodeficiency virus type 1 (HIV) infection. A double-

blind, placebo-controlled trial. The AIDS Clinical Trials Group. Ann Intern Med 

112:727. 

102. Tseng, A., J. Conly, D. Fletcher, D. Keystone, I. Salit, and S. Walmsley. 1998. 

Precipitous declines in hemoglobin levels associated with combination 

zidovudine and lamivudine therapy. Clin Infect Dis 27:908. 

103. Richman, D. D., M. A. Fischl, M. H. Grieco, M. S. Gottlieb, P. A. Volberding, O. L. 

Laskin, J. M. Leedom, J. E. Groopman, D. Mildvan, M. S. Hirsch, and et al. 1987. 

The toxicity of azidothymidine (AZT) in the treatment of patients with AIDS and 

AIDS-related complex. A double-blind, placebo-controlled trial. N Engl J Med 

317:192. 

104. McKinney, R. E., Jr., M. A. Maha, E. M. Connor, J. Feinberg, G. B. Scott, M. 

Wulfsohn, K. McIntosh, W. Borkowsky, J. F. Modlin, P. Weintrub, and et al. 1991. 

A multicenter trial of oral zidovudine in children with advanced human 

immunodeficiency virus disease. The Protocol 043 Study Group. N Engl J Med 

324:1018. 

105. Gill, P. S., M. Rarick, R. K. Brynes, D. Causey, C. Loureiro, and A. M. Levine. 

1987. Azidothymidine associated with bone marrow failure in the acquired 

immunodeficiency syndrome (AIDS). Ann Intern Med 107:502. 

106. Romanelli, F., K. Empey, and C. Pomeroy. 2002. Macrocytosis as an indicator of 

medication (zidovudine) adherence in patients with HIV infection. AIDS Patient 

Care STDS 16:405. 

107. Furman, P. A., J. A. Fyfe, M. H. St Clair, K. Weinhold, J. L. Rideout, G. A. 

Freeman, S. N. Lehrman, D. P. Bolognesi, S. Broder, H. Mitsuya, and et al. 1986. 

Phosphorylation of 3'-azido-3'-deoxythymidine and selective interaction of the 5'-



www.manaraa.com

 118

triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl 

Acad Sci U S A 83:8333. 

108. Dainiak, N., M. Worthington, M. A. Riordan, S. Kreczko, and L. Goldman. 1988. 

3'-Azido-3'-deoxythymidine (AZT) inhibits proliferation in vitro of human 

haematopoietic progenitor cells. Br J Haematol 69:299. 

109. Bogliolo, G., R. Lerza, M. Mencoboni, A. Saviane, and I. Pannacciulli. 1988. 

Azidothymidine-induced depression of murine hemopoietic progenitor cells. Exp 

Hematol 16:938. 

110. Sommadossi, J. P., and R. Carlisle. 1987. Toxicity of 3'-azido-3'-deoxythymidine 

and 9-(1,3-dihydroxy-2-propoxymethyl)guanine for normal human hematopoietic 

progenitor cells in vitro. Antimicrob Agents Chemother 31:452. 

111. Viora, M., G. Di Genova, R. Rivabene, W. Malorni, and A. Fattorossi. 1997. 

Interference with cell cycle progression and induction of apoptosis by 

dideoxynucleoside analogs. Int J Immunopharmacol 19:311. 

112. Barile, M., D. Valenti, E. Quagliariello, and S. Passarella. 1998. Mitochondria as 

cell targets of AZT (zidovudine). Gen Pharmacol 31:531. 

113. Foli, A., F. Benvenuto, G. Piccinini, A. Bareggi, A. Cossarizza, J. Lisziewicz, and 

F. Lori. 2001. Direct analysis of mitochondrial toxicity of antiretroviral drugs. Aids 

15:1687. 

114. Lim, S. E., M. V. Ponamarev, M. J. Longley, and W. C. Copeland. 2003. 

Structural determinants in human DNA polymerase gamma account for 

mitochondrial toxicity from nucleoside analogs. J Mol Biol 329:45. 

115. Rustin, P. 2001. Mitochondrial dysfunction in HIV infection: an overview of 

pathogenesis. J HIV Ther 6:4. 

116. Cote, H. C., Z. L. Brumme, K. J. Craib, C. S. Alexander, B. Wynhoven, L. Ting, 

H. Wong, M. Harris, P. R. Harrigan, M. V. O'Shaughnessy, and J. S. Montaner. 

2002. Changes in mitochondrial DNA as a marker of nucleoside toxicity in HIV-

infected patients. N Engl J Med 346:811. 

117. Moyle, G. 2000. Clinical manifestations and management of antiretroviral 

nucleoside analog-related mitochondrial toxicity. Clin Ther 22:911. 



www.manaraa.com

 119

118. Zaera, M. G., O. Miro, E. Pedrol, A. Soler, M. Picon, F. Cardellach, J. 

Casademont, and V. Nunes. 2001. Mitochondrial involvement in antiretroviral 

therapy-related lipodystrophy. Aids 15:1643. 

119. Kakuda, T. N. 2000. Pharmacology of nucleoside and nucleotide reverse 

transcriptase inhibitor-induced mitochondrial toxicity. Clin Ther 22:685. 

120. Matarrese, P., L. Gambardella, A. Cassone, S. Vella, R. Cauda, and W. Malorni. 

2003. Mitochondrial membrane hyperpolarization hijacks activated T 

lymphocytes toward the apoptotic-prone phenotype: homeostatic mechanisms of 

HIV protease inhibitors. J Immunol 170:6006. 

121. Phenix, B. N., J. B. Angel, F. Mandy, S. Kravcik, K. Parato, K. A. Chambers, K. 

Gallicano, N. Hawley-Foss, S. Cassol, D. W. Cameron, and A. D. Badley. 2000. 

Decreased HIV-associated T cell apoptosis by HIV protease inhibitors. AIDS Res 

Hum Retroviruses 16:559. 

122. Chavan, S. J., S. L. Tamma, M. Kaplan, M. Gersten, and S. G. Pahwa. 1999. 

Reduction in T cell apoptosis in patients with HIV disease following antiretroviral 

therapy. Clin Immunol 93:24. 

123. McKallip, R. J., M. Nagarkatti, and P. S. Nagarkatti. 1995. Immunotoxicity of AZT: 

inhibitory effect on thymocyte differentiation and peripheral T cell responsiveness 

to gp120 of human immunodeficiency virus. Toxicol Appl Pharmacol 131:53. 

124. Gallicchio, V. S., N. K. Hughes, B. C. Hulette, and L. Noblitt. 1991. Effect of 

interleukin-1, GM-CSF, erythropoietin, and lithium on the toxicity associated with 

3'-azido-3'-deoxythymidine (AZT) in vitro on hematopoietic progenitors (CFU-GM, 

CFU-MEG, and BFU-E) using murine retrovirus-infected hematopoietic cells. J 

Leukoc Biol 50:580. 

125. Hengge, U. R., C. Borchard, S. Esser, M. Schroder, A. Mirmohammadsadegh, 

and M. Goos. 2002. Lymphocytes proliferate in blood and lymph nodes following 

interleukin-2 therapy in addition to highly active antiretroviral therapy. Aids 

16:151. 

126. Gougeon, M. L., C. Rouzioux, I. Liberman, M. Burgard, Y. Taoufik, J. P. Viard, K. 

Bouchenafa, C. Capitant, J. F. Delfraissy, and Y. Levy. 2001. Immunological and 



www.manaraa.com

 120

virological effects of long term IL-2 therapy in HIV-1-infected patients. Aids 

15:1729. 

127. Moyle, G. J., E. Bouza, F. Antunes, D. Smith, R. Harris, M. Warburg, and M. 

Walker. 1997. Zidovudine monotherapy versus zidovudine plus zalcitabine 

combination therapy in HIV-positive persons with CD4 cell counts 300-500 

cells/mm3: a double-blind controlled trial. The M50003 Study Group Coordinating 

and Writing Committee. Antivir Ther 2:229. 

128. Bakshi, S. S., P. Britto, E. Capparelli, L. Mofenson, M. G. Fowler, S. Rasheed, D. 

Schoenfeld, B. Zimmer, Y. Frank, R. Yogev, E. Jimenez, M. Salgo, G. Boone, 

and S. G. Pahwa. 1997. Evaluation of pharmacokinetics, safety, tolerance, and 

activity of combination of zalcitabine and zidovudine in stable, zidovudine-treated 

pediatric patients with human immunodeficiency virus infection. AIDS Clinical 

Trials Group Protocol 190 Team. J Infect Dis 175:1039. 

129. Yarchoan, R., C. F. Perno, R. V. Thomas, R. W. Klecker, J. P. Allain, R. J. Wills, 

N. McAtee, M. A. Fischl, R. Dubinsky, M. C. McNeely, and et al. 1988. Phase I 

studies of 2',3'-dideoxycytidine in severe human immunodeficiency virus infection 

as a single agent and alternating with zidovudine (AZT). Lancet 1:76. 

130. Abrams, D. I., A. I. Goldman, C. Launer, J. A. Korvick, J. D. Neaton, L. R. Crane, 

M. Grodesky, S. Wakefield, K. Muth, S. Kornegay, and et al. 1994. A 

comparative trial of didanosine or zalcitabine after treatment with zidovudine in 

patients with human immunodeficiency virus infection. The Terry Beirn 

Community Programs for Clinical Research on AIDS. N Engl J Med 330:657. 

131. Schindzielorz, A., I. Pike, M. Daniels, L. Pacelli, and L. Smaldone. 1994. Rates 

and risk factors for adverse events associated with didanosine in the expanded 

access program. Clin Infect Dis 19:1076. 

132. Davey, R. T., Jr., D. G. Chaitt, G. F. Reed, W. W. Freimuth, B. R. Herpin, J. A. 

Metcalf, P. S. Eastman, J. Falloon, J. A. Kovacs, M. A. Polis, R. E. Walker, H. 

Masur, J. Boyle, S. Coleman, S. R. Cox, L. Wathen, C. L. Daenzer, and H. C. 

Lane. 1996. Randomized, controlled phase I/II, trial of combination therapy with 

delavirdine (U-90152S) and conventional nucleosides in human 



www.manaraa.com

 121

immunodeficiency virus type 1-infected patients. Antimicrob Agents Chemother 

40:1657. 

133. Wilde, J. T. 2000. Protease inhibitor therapy and bleeding. Haemophilia 6:487. 

134. Racoosin, J. A., and C. M. Kessler. 1999. Bleeding episodes in HIV-positive 

patients taking HIV protease inhibitors: a case series. Haemophilia 5:266. 

135. Krogstad, P., A. Wiznia, K. Luzuriaga, W. Dankner, K. Nielsen, M. Gersten, B. 

Kerr, A. Hendricks, B. Boczany, M. Rosenberg, D. Jung, S. A. Spector, and Y. 

Bryson. 1999. Treatment of human immunodeficiency virus 1-infected infants and 

children with the protease inhibitor nelfinavir mesylate. Clin Infect Dis 28:1109. 

136. Deeks, S. G., P. Barditch-Crovo, P. S. Lietman, F. Hwang, K. C. Cundy, J. F. 

Rooney, N. S. Hellmann, S. Safrin, and J. O. Kahn. 1998. Safety, 

pharmacokinetics, and antiretroviral activity of intravenous 9-[2-(R)-

(Phosphonomethoxy)propyl]adenine, a novel anti-human immunodeficiency virus 

(HIV) therapy, in HIV-infected adults. Antimicrob Agents Chemother 42:2380. 

137. Kitchen, V. S., C. Skinner, K. Ariyoshi, E. A. Lane, I. B. Duncan, J. Burckhardt, H. 

U. Burger, K. Bragman, A. J. Pinching, and J. N. Weber. 1995. Safety and 

activity of saquinavir in HIV infection. Lancet 345:952. 

138. Wagstaff, A. J., and H. M. Bryson. 1994. Foscarnet. A reappraisal of its antiviral 

activity, pharmacokinetic properties and therapeutic use in immunocompromised 

patients with viral infections. Drugs 48:199. 

139. Fanning, M. M., S. E. Read, M. Benson, S. Vas, A. Rachlis, V. Kozousek, C. 

Mortimer, P. Harvey, C. Schwartz, E. Chew, and et al. 1990. Foscarnet therapy 

of cytomegalovirus retinitis in AIDS. J Acquir Immune Defic Syndr 3:472. 

140. Jacobson, M. A., J. J. O'Donnell, and J. Mills. 1989. Foscarnet treatment of 

cytomegalovirus retinitis in patients with the acquired immunodeficiency 

syndrome. Antimicrob Agents Chemother 33:736. 

141. Lea, A. P., and H. M. Bryson. 1996. Cidofovir. Drugs 52:225. 

142. Ognibene, A. J. 1970. Agranulocytosis due to dapsone. Ann Intern Med 72:521. 

143. Catalano, P. M. 1971. Dapsone agranulocytosis. Arch Dermatol 104:675. 

144. Foucauld, J., W. Uphouse, and J. Berenberg. 1985. Dapsone and aplastic 

anemia. Ann Intern Med 102:139. 



www.manaraa.com

 122

145. Allegra, C. J., J. A. Kovacs, J. C. Drake, J. C. Swan, B. A. Chabner, and H. 

Masur. 1987. Activity of antifolates against Pneumocystis carinii dihydrofolate 

reductase and identification of a potent new agent. J Exp Med 165:926. 

146. Sattler, F. R., C. J. Allegra, T. D. Verdegem, B. Akil, C. U. Tuazon, C. Hughlett, 

D. Ogata-Arakaki, J. Feinberg, J. Shelhamer, H. C. Lane, and et al. 1990. 

Trimetrexate-leucovorin dosage evaluation study for treatment of Pneumocystis 

carinii pneumonia. J Infect Dis 161:91. 

147. Ansdell, V. E., S. G. Wright, and D. B. Hutchinson. 1976. Megaloblastic anaemia 

associated with combined pyrimethamine and co-trimoxazole administration. 

Lancet 2:1257. 

148. Fleming, A. F., D. A. Warrell, and H. Dickmeiss. 1974. Letter: Co-trimoxazole and 

the blood. Lancet 2:284. 

149. Gordin, F. M., G. L. Simon, C. B. Wofsy, and J. Mills. 1984. Adverse reactions to 

trimethoprim-sulfamethoxazole in patients with the acquired immunodeficiency 

syndrome. Ann Intern Med 100:495. 

150. Kovacs, J. A., J. W. Hiemenz, A. M. Macher, D. Stover, H. W. Murray, J. 

Shelhamer, H. C. Lane, C. Urmacher, C. Honig, D. L. Longo, and et al. 1984. 

Pneumocystis carinii pneumonia: a comparison between patients with the 

acquired immunodeficiency syndrome and patients with other 

immunodeficiencies. Ann Intern Med 100:663. 

151. Carr, A., B. Tindall, R. Penny, and D. A. Cooper. 1993. Patterns of multiple-drug 

hypersensitivities in HIV-infected patients. Aids 7:1532. 

152. Naisbitt, D. J., S. J. Hough, H. J. Gill, M. Pirmohamed, N. R. Kitteringham, and B. 

K. Park. 1999. Cellular disposition of sulphamethoxazole and its metabolites: 

implications for hypersensitivity. Br J Pharmacol 126:1393. 

153. Buhl, R., H. A. Jaffe, K. J. Holroyd, F. B. Wells, A. Mastrangeli, C. Saltini, A. M. 

Cantin, and R. G. Crystal. 1989. Systemic glutathione deficiency in symptom-free 

HIV-seropositive individuals. Lancet 2:1294. 

154. Carr, A., B. Tindall, R. Penny, and D. A. Cooper. 1993. In vitro cytotoxicity as a 

marker of hypersensitivity to sulphamethoxazole in patients with HIV. Clin Exp 

Immunol 94:21. 



www.manaraa.com

 123

155. Cribb, A. E., M. Miller, J. S. Leeder, J. Hill, and S. P. Spielberg. 1991. Reactions 

of the nitroso and hydroxylamine metabolites of sulfamethoxazole with reduced 

glutathione. Implications for idiosyncratic toxicity. Drug Metab Dispos 19:900. 

156. Cribb, A. E., and S. P. Spielberg. 1990. Hepatic microsomal metabolism of 

sulfamethoxazole to the hydroxylamine. Drug Metab Dispos 18:784. 

157. Sahai, J., K. Gallicano, A. Pakuts, and D. W. Cameron. 1994. Effect of 

fluconazole on zidovudine pharmacokinetics in patients infected with human 

immunodeficiency virus. J Infect Dis 169:1103. 

158. Chatton, J. Y., A. Munafo, J. P. Chave, F. Steinhauslin, F. Roch-Ramel, M. P. 

Glauser, and J. Biollaz. 1992. Trimethoprim, alone or in combination with 

sulphamethoxazole, decreases the renal excretion of zidovudine and its 

glucuronide. Br J Clin Pharmacol 34:551. 

159. McCance-Katz, E. F., P. M. Rainey, P. Jatlow, and G. Friedland. 1998. 

Methadone effects on zidovudine disposition (AIDS Clinical Trials Group 262). J 

Acquir Immune Defic Syndr Hum Retrovirol 18:435. 

160. Lee, B. L., M. G. Tauber, B. Sadler, D. Goldstein, and H. F. Chambers. 1996. 

Atovaquone inhibits the glucuronidation and increases the plasma concentrations 

of zidovudine. Clin Pharmacol Ther 59:14. 

161. de Miranda, P., S. S. Good, R. Yarchoan, R. V. Thomas, M. R. Blum, C. E. 

Myers, and S. Broder. 1989. Alteration of zidovudine pharmacokinetics by 

probenecid in patients with AIDS or AIDS-related complex. Clin Pharmacol Ther 

46:494. 

162. Kornhauser, D. M., B. G. Petty, C. W. Hendrix, A. S. Woods, L. J. Nerhood, J. G. 

Bartlett, and P. S. Lietman. 1989. Probenecid and zidovudine metabolism. 

Lancet 2:473. 

163. Merry, C., M. G. Barry, F. Mulcahy, M. Ryan, J. Heavey, J. F. Tjia, S. E. Gibbons, 

A. M. Breckenridge, and D. J. Back. 1997. Saquinavir pharmacokinetics alone 

and in combination with ritonavir in HIV-infected patients. Aids 11:F29. 

164. Barry, M., F. Mulcahy, C. Merry, S. Gibbons, and D. Back. 1999. 

Pharmacokinetics and potential interactions amongst antiretroviral agents used 

to treat patients with HIV infection. Clin Pharmacokinet 36:289. 



www.manaraa.com

 124

165. Hochster, H., D. Dieterich, S. Bozzette, R. C. Reichman, J. D. Connor, L. Liebes, 

R. L. Sonke, S. A. Spector, F. Valentine, C. Pettinelli, and et al. 1990. Toxicity of 

combined ganciclovir and zidovudine for cytomegalovirus disease associated 

with AIDS. An AIDS Clinical Trials Group Study. Ann Intern Med 113:111. 

166. Jacobson, M. A., W. Owen, J. Campbell, C. Brosgart, and D. I. Abrams. 1993. 

Tolerability of combined ganciclovir and didanosine for the treatment of 

cytomegalovirus disease associated with AIDS. Clin Infect Dis 16 Suppl 1:S69. 

167. Group, S. o. O. C. o. A. R. 1992. Mortality in patients with the acquired 

immunodeficiency syndrome treated with either foscarnet or ganciclovir for 

cytomegalovirus retinitis. Studies of Ocular Complications of AIDS Research 

Group, in collaboration with the AIDS Clinical Trials Group. N Engl J Med 

326:213. 

168. Freund, Y. R., L. Dousman, E. S. Riccio, B. Sato, J. T. MacGregor, and N. 

Mohagheghpour. 2001. Immunohematotoxicity studies with combinations of 

dapsone and zidovudine. Int Immunopharmacol 1:2131. 

169. Freund, Y. R., L. Dousman, and N. Mohagheghpour. 2002. Prophylactic 

clarithromycin to treat mycobacterium avium in HIV patients receiving zidovudine 

may significantly increase mortality by suppressing lymphopoiesis and 

hematopoiesis. Int Immunopharmacol 2:1465. 

170. Slavin, M. A., J. F. Hoy, K. Stewart, M. B. Pettinger, C. R. Lucas, and S. J. Kent. 

1992. Oral dapsone versus nebulized pentamidine for Pneumocystis carinii 

pneumonia prophylaxis: an open randomized prospective trial to assess efficacy 

and haematological toxicity. Aids 6:1169. 

171. Matsuoka, N., K. Eguchi, A. Kawakami, M. Tsuboi, Y. Kawabe, T. Aoyagi, and S. 

Nagataki. 1996. Inhibitory effect of clarithromycin on costimulatory molecule 

expression and cytokine production by synovial fibroblast-like cells. Clin Exp 

Immunol 104:501. 

172. Morikawa, K., F. Oseko, S. Morikawa, and K. Iwamoto. 1994. Immunomodulatory 

effects of three macrolides, midecamycin acetate, josamycin, and clarithromycin, 

on human T-lymphocyte function in vitro. Antimicrob Agents Chemother 38:2643. 



www.manaraa.com

 125

173. Morikawa, K., H. Watabe, M. Araake, and S. Morikawa. 1996. Modulatory effect 

of antibiotics on cytokine production by human monocytes in vitro. Antimicrob 

Agents Chemother 40:1366. 

174. Burman, W. J., B. L. Stone, C. A. Rietmeijer, J. Maslow, D. L. Cohn, and R. R. 

Reves. 1998. Long-term outcomes of treatment of Mycobacterium avium 

complex bacteremia using a clarithromycin-containing regimen. Aids 12:1309. 

175. Chaisson, R. E., C. A. Benson, M. P. Dube, L. B. Heifets, J. A. Korvick, S. Elkin, 

T. Smith, J. C. Craft, and F. R. Sattler. 1994. Clarithromycin therapy for 

bacteremic Mycobacterium avium complex disease. A randomized, double-blind, 

dose-ranging study in patients with AIDS. AIDS Clinical Trials Group Protocol 

157 Study Team. Ann Intern Med 121:905. 

176. Goldberger, M., and H. Masur. 1994. Clarithromycin therapy for Mycobacterium 

avium complex disease in patients with AIDS: potential and problems. Ann Intern 

Med 121:974. 

177. Kadish, J. L., and R. S. Basch. 1976. Hematopoietic thymocyte precursors. I. 

Assay and kinetics of the appearance of progeny. J Exp Med 143:1082. 

178. Hardy, R. R., C. E. Carmack, S. A. Shinton, J. D. Kemp, and K. Hayakawa. 1991. 

Resolution and characterization of pro-B and pre-pro-B cell stages in normal 

mouse bone marrow. J Exp Med 173:1213. 

179. Hardy, R. R., and K. Hayakawa. 2001. B cell development pathways. Annu Rev 

Immunol 19:595. 

180. Hozumi, N., and S. Tonegawa. 1976. Evidence for somatic rearrangement of 

immunoglobulin genes coding for variable and constant regions. Proc Natl Acad 

Sci U S A 73:3628. 

181. Matthyssens, G., N. Hozumi, and S. Tonegawa. 1976. Somatic generation of 

antibody diversity. Ann Immunol (Paris) 127:439. 

182. Schatz, D. G., M. A. Oettinger, and D. Baltimore. 1989. The V(D)J recombination 

activating gene, RAG-1. Cell 59:1035. 

183. Oettinger, M. A., D. G. Schatz, C. Gorka, and D. Baltimore. 1990. RAG-1 and 

RAG-2, adjacent genes that synergistically activate V(D)J recombination. 

Science 248:1517. 



www.manaraa.com

 126

184. Sakaguchi, N., and F. Melchers. 1986. Lambda 5, a new light-chain-related locus 

selectively expressed in pre-B lymphocytes. Nature 324:579. 

185. Kudo, A., and F. Melchers. 1987. A second gene, VpreB in the lambda 5 locus of 

the mouse, which appears to be selectively expressed in pre-B lymphocytes. 

Embo J 6:2267. 

186. Grawunder, U., T. M. Leu, D. G. Schatz, A. Werner, A. G. Rolink, F. Melchers, 

and T. H. Winkler. 1995. Down-regulation of RAG1 and RAG2 gene expression 

in preB cells after functional immunoglobulin heavy chain rearrangement. 

Immunity 3:601. 

187. Osmond, D. G., A. Rolink, and F. Melchers. 1998. Murine B lymphopoiesis: 

towards a unified model. Immunol Today 19:65. 

188. Goodnow, C. C., J. Crosbie, S. Adelstein, T. B. Lavoie, S. J. Smith-Gill, R. A. 

Brink, H. Pritchard-Briscoe, J. S. Wotherspoon, R. H. Loblay, K. Raphael, and et 

al. 1988. Altered immunoglobulin expression and functional silencing of self-

reactive B lymphocytes in transgenic mice. Nature 334:676. 

189. Hartley, S. B., J. Crosbie, R. Brink, A. B. Kantor, A. Basten, and C. C. Goodnow. 

1991. Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes 

recognizing membrane-bound antigens. Nature 353:765. 

190. Pelanda, R., S. Schwers, E. Sonoda, R. M. Torres, D. Nemazee, and K. 

Rajewsky. 1997. Receptor editing in a transgenic mouse model: site, efficiency, 

and role in B cell tolerance and antibody diversification. Immunity 7:765. 

191. Rosenberg, N., and P. W. Kincade. 1994. B-lineage differentiation in normal and 

transformed cells and the microenvironment that supports it. Curr Opin Immunol 

6:203. 

192. Ryan, D. H., B. L. Nuccie, C. N. Abboud, and J. M. Winslow. 1991. Vascular cell 

adhesion molecule-1 and the integrin VLA-4 mediate adhesion of human B cell 

precursors to cultured bone marrow adherent cells. J Clin Invest 88:995. 

193. Saeland, S., V. Duvert, D. Pandrau, C. Caux, I. Durand, N. Wrighton, J. 

Wideman, F. Lee, and J. Banchereau. 1991. Interleukin-7 induces the 

proliferation of normal human B-cell precursors. Blood 78:2229. 



www.manaraa.com

 127

194. Kondo, M., I. L. Weissman, and K. Akashi. 1997. Identification of clonogenic 

common lymphoid progenitors in mouse bone marrow. Cell 91:661. 

195. Li, Y. S., R. Wasserman, K. Hayakawa, and R. R. Hardy. 1996. Identification of 

the earliest B lineage stage in mouse bone marrow. Immunity 5:527. 

196. Kadmon, G., M. Eckert, M. Sammar, M. Schachner, and P. Altevogt. 1992. 

Nectadrin, the heat-stable antigen, is a cell adhesion molecule. J Cell Biol 

118:1245. 

197. Lin, Q., I. Taniuchi, D. Kitamura, J. Wang, J. F. Kearney, T. Watanabe, and M. D. 

Cooper. 1998. T and B cell development in BP-1/6C3/aminopeptidase A-deficient 

mice. J Immunol 160:4681. 

198. Nielsen, P. J., B. Lorenz, A. M. Muller, R. H. Wenger, F. Brombacher, M. Simon, 

T. von der Weid, W. J. Langhorne, H. Mossmann, and G. Kohler. 1997. Altered 

erythrocytes and a leaky block in B-cell development in CD24/HSA-deficient 

mice. Blood 89:1058. 

199. Hardy, R. R. 1990. Development of murine B cell subpopulations. Semin 

Immunol 2:197. 

200. Burkhart, C., S. von Greyerz, J. P. Depta, D. J. Naisbitt, M. Britschgi, K. B. Park, 

and W. J. Pichler. 2001. Influence of reduced glutathione on the proliferative 

response of sulfamethoxazole-specific and sulfamethoxazole-metabolite-specific 

human CD4+ T-cells. Br J Pharmacol 132:623. 

201. Daftarian, M. P., L. G. Filion, W. Cameron, B. Conway, R. Roy, F. Tropper, and 

F. Diaz-Mitoma. 1995. Immune response to sulfamethoxazole in patients with 

AIDS. Clin Diagn Lab Immunol 2:199. 

202. Naisbitt, D. J., S. F. Gordon, M. Pirmohamed, C. Burkhart, A. E. Cribb, W. J. 

Pichler, and B. K. Park. 2001. Antigenicity and immunogenicity of 

sulphamethoxazole: demonstration of metabolism-dependent haptenation and T-

cell proliferation in vivo. Br J Pharmacol 133:295. 

203. Cribb, A. E., and S. P. Spielberg. 1992. Sulfamethoxazole is metabolized to the 

hydroxylamine in humans. Clin Pharmacol Ther 51:522. 



www.manaraa.com

 128

204. Gill, H. J., S. J. Hough, D. J. Naisbitt, J. L. Maggs, N. R. Kitteringham, M. 

Pirmohamed, and B. K. Park. 1997. The relationship between the disposition and 

immunogenicity of sulfamethoxazole in the rat. J Pharmacol Exp Ther 282:795. 

205. Borst, P., R. Evers, M. Kool, and J. Wijnholds. 2000. A family of drug 

transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 

92:1295. 

206. Schuetz, J. D., M. C. Connelly, D. Sun, S. G. Paibir, P. M. Flynn, R. V. Srinivas, 

A. Kumar, and A. Fridland. 1999. MRP4: A previously unidentified factor in 

resistance to nucleoside-based antiviral drugs. Nat Med 5:1048. 

207. Jorajuria, S., N. Dereuddre-Bosquet, F. Becher, S. Martin, F. Porcheray, A. 

Garrigues, A. Mabondzo, H. Benech, J. Grassi, S. Orlowski, D. Dormont, and P. 

Clayette. 2004. ATP binding cassette multidrug transporters limit the anti-HIV 

activity of zidovudine and indinavir in infected human macrophages. Antivir Ther 

9:519. 

208. Lai, L., and T. M. Tan. 2002. Role of glutathione in the multidrug resistance 

protein 4 (MRP4/ABCC4)-mediated efflux of cAMP and resistance to purine 

analogues. Biochem J 361:497. 

209. Chou, T. C., and P. Talalay. 1984. Quantitative analysis of dose-effect 

relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv 

Enzyme Regul 22:27. 

210. Vree, T. B., A. J. van der Ven, C. P. Verwey-van Wissen, E. W. van Ewijk-

Beneken Kolmer, A. E. Swolfs, P. M. van Galen, and H. Amatdjais-Groenen. 

1994. Isolation, identification and determination of sulfamethoxazole and its 

known metabolites in human plasma and urine by high-performance liquid 

chromatography. J Chromatogr B Biomed Appl 658:327. 

211. Wijnholds, J., R. Evers, M. R. van Leusden, C. A. Mol, G. J. Zaman, U. Mayer, J. 

H. Beijnen, M. van der Valk, P. Krimpenfort, and P. Borst. 1997. Increased 

sensitivity to anticancer drugs and decreased inflammatory response in mice 

lacking the multidrug resistance-associated protein. Nat Med 3:1275. 



www.manaraa.com

 129

212. Jones, J. L., D. L. Hanson, M. S. Dworkin, D. L. Alderton, P. L. Fleming, J. E. 

Kaplan, and J. Ward. 1999. Surveillance for AIDS-defining opportunistic 

illnesses, 1992-1997. MMWR CDC Surveill Summ 48:1. 

213. Morris, A., J. D. Lundgren, H. Masur, P. D. Walzer, D. L. Hanson, T. Frederick, L. 

Huang, C. B. Beard, and J. E. Kaplan. 2004. Current epidemiology of 

Pneumocystis pneumonia. Emerg Infect Dis 10:1713. 

214. Kaplan, J. E., H. Masur, and K. K. Holmes. 2002. Guidelines for preventing 

opportunistic infections among HIV-infected persons--2002. Recommendations 

of the U.S. Public Health Service and the Infectious Diseases Society of America. 

MMWR Recomm Rep 51:1. 

215. Harmsen, A. G., and M. Stankiewicz. 1990. Requirement for CD4+ cells in 

resistance to Pneumocystis carinii pneumonia in mice. J Exp Med 172:937. 

216. Beck, J. M., M. L. Warnock, H. B. Kaltreider, and J. E. Shellito. 1993. Host 

defenses against Pneumocystis carinii in mice selectively depleted of CD4+ 

lymphocytes. Chest 103:116S. 

217. Harmsen, A. G., and M. Stankiewicz. 1991. T cells are not sufficient for 

resistance to Pneumocystis carinii pneumonia in mice. J Protozool 38:44S. 

218. Marcotte, H., D. Levesque, K. Delanay, A. Bourgeault, R. de la Durantaye, S. 

Brochu, and M. C. Lavoie. 1996. Pneumocystis carinii infection in transgenic B 

cell-deficient mice. J Infect Dis 173:1034. 

219. Lund, F. E., K. Schuer, M. Hollifield, T. D. Randall, and B. A. Garvy. 2003. 

Clearance of Pneumocystis carinii in mice is dependent on B cells but not on P 

carinii-specific antibody. J Immunol 171:1423. 

220. Cushion, M. T., J. J. Ruffolo, and P. D. Walzer. 1988. Analysis of the 

developmental stages of Pneumocystis carinii, in vitro. Lab Invest 58:324. 

221. Garvy, B. A., and A. G. Harmsen. 1996. Susceptibility to Pneumocystis carinii 

infection: host responses of neonatal mice from immune or naive mothers and of 

immune or naive adults. Infect Immun 64:3987. 

222. Harper, S. A., K. Fukuda, T. M. Uyeki, N. J. Cox, and C. B. Bridges. 2004. 

Prevention and control of influenza: recommendations of the Advisory Committee 

on Immunization Practices (ACIP). MMWR Recomm Rep 53:1. 



www.manaraa.com

 130

223. Amendola, A., A. Boschini, D. Colzani, G. Anselmi, A. Oltolina, R. Zucconi, M. 

Begnini, S. Besana, E. Tanzi, and A. R. Zanetti. 2001. Influenza vaccination of 

HIV-1-positive and HIV-1-negative former intravenous drug users. J Med Virol 

65:644. 

224. Sorvillo, F. J., and B. L. Nahlen. 1995. Influenza immunization for HIV-infected 

persons in Los Angeles. Vaccine 13:377. 

225. Fowke, K. R., R. D'Amico, D. N. Chernoff, J. C. Pottage, Jr., C. A. Benson, B. E. 

Sha, H. A. Kessler, A. L. Landay, and G. M. Shearer. 1997. Immunologic and 

virologic evaluation after influenza vaccination of HIV-1-infected patients. Aids 

11:1013. 

226. Kroon, F. P., J. T. van Dissel, J. C. de Jong, K. Zwinderman, and R. van Furth. 

2000. Antibody response after influenza vaccination in HIV-infected individuals: a 

consecutive 3-year study. Vaccine 18:3040. 

227. Iorio, A. M., D. Francisci, B. Camilloni, G. Stagni, M. De Martino, D. Toneatto, R. 

Bugarini, M. Neri, and A. Podda. 2003. Antibody responses and HIV-1 viral load 

in HIV-1-seropositive subjects immunised with either the MF59-adjuvanted 

influenza vaccine or a conventional non-adjuvanted subunit vaccine during highly 

active antiretroviral therapy. Vaccine 21:3629. 

228. Simanis, V., and P. Nurse. 1986. The cell cycle control gene cdc2+ of fission 

yeast encodes a protein kinase potentially regulated by phosphorylation. Cell 

45:261. 

229. Draetta, G., and D. Beach. 1989. The mammalian cdc2 protein kinase: 

mechanisms of regulation during the cell cycle. J Cell Sci Suppl 12:21. 

230. Weinert, T. A., G. L. Kiser, and L. H. Hartwell. 1994. Mitotic checkpoint genes in 

budding yeast and the dependence of mitosis on DNA replication and repair. 

Genes Dev 8:652. 

231. Weinert, T. A., and L. H. Hartwell. 1988. The RAD9 gene controls the cell cycle 

response to DNA damage in Saccharomyces cerevisiae. Science 241:317. 

232. Lautier, D., J. Lagueux, J. Thibodeau, L. Menard, and G. G. Poirier. 1993. 

Molecular and biochemical features of poly (ADP-ribose) metabolism. Mol Cell 

Biochem 122:171. 



www.manaraa.com

 131

233. Hong, S. J., T. M. Dawson, and V. L. Dawson. 2004. Nuclear and mitochondrial 

conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci 

25:259. 

234. Susin, S. A., H. K. Lorenzo, N. Zamzami, I. Marzo, B. E. Snow, G. M. Brothers, J. 

Mangion, E. Jacotot, P. Costantini, M. Loeffler, N. Larochette, D. R. Goodlett, R. 

Aebersold, D. P. Siderovski, J. M. Penninger, and G. Kroemer. 1999. Molecular 

characterization of mitochondrial apoptosis-inducing factor. Nature 397:441. 

235. Loeffler, M., E. Daugas, S. A. Susin, N. Zamzami, D. Metivier, A. L. Nieminen, G. 

Brothers, J. M. Penninger, and G. Kroemer. 2001. Dominant cell death induction 

by extramitochondrially targeted apoptosis-inducing factor. Faseb J 15:758. 

236. Endres, M., Z. Q. Wang, S. Namura, C. Waeber, and M. A. Moskowitz. 1997. 

Ischemic brain injury is mediated by the activation of poly(ADP-

ribose)polymerase. J Cereb Blood Flow Metab 17:1143. 

237. Szabo, C., and V. L. Dawson. 1998. Role of poly(ADP-ribose) synthetase in 

inflammation and ischaemia-reperfusion. Trends Pharmacol Sci 19:287. 

238. Eliasson, M. J., K. Sampei, A. S. Mandir, P. D. Hurn, R. J. Traystman, J. Bao, A. 

Pieper, Z. Q. Wang, T. M. Dawson, S. H. Snyder, and V. L. Dawson. 1997. 

Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral 

ischemia. Nat Med 3:1089. 

239. Pieper, A. A., T. Walles, G. Wei, E. E. Clements, A. Verma, S. H. Snyder, and J. 

L. Zweier. 2000. Myocardial postischemic injury is reduced by polyADPripose 

polymerase-1 gene disruption. Mol Med 6:271. 

240. Collier, A. C., R. J. Helliwell, J. A. Keelan, J. W. Paxton, M. D. Mitchell, and M. D. 

Tingle. 2003. 3'-azido-3'-deoxythymidine (AZT) induces apoptosis and alters 

metabolic enzyme activity in human placenta. Toxicol Appl Pharmacol 192:164. 

241. Ishitsuka, K., T. Hideshima, M. Hamasaki, N. Raje, S. Kumar, K. Podar, S. Le 

Gouill, N. Shiraishi, H. Yasui, A. M. Roccaro, Y. Z. Tai, D. Chauhan, R. Fram, K. 

Tamura, J. Jain, and K. C. Anderson. 2005. Novel inosine monophosphate 

dehydrogenase inhibitor VX-944 induces apoptosis in multiple myeloma cells 

primarily via caspase-independent AIF/Endo G pathway. Oncogene. 



www.manaraa.com

 132

242. Falchetti, A., A. Franchi, C. Bordi, C. Mavilia, L. Masi, F. Cioppi, R. Recenti, L. 

Picariello, F. Marini, F. Del Monte, V. Ghinoi, V. Martineti, A. Tanini, and M. L. 

Brandi. 2005. Azidothymidine induces apoptosis and inhibits cell growth and 

telomerase activity of human parathyroid cancer cells in culture. J Bone Miner 

Res 20:410. 

243. Ghosh, S. K., C. Wood, L. H. Boise, A. M. Mian, V. V. Deyev, G. Feuer, N. L. 

Toomey, N. C. Shank, L. Cabral, G. N. Barber, and W. J. Harrington, Jr. 2003. 

Potentiation of TRAIL-induced apoptosis in primary effusion lymphoma through 

azidothymidine-mediated inhibition of NF-kappa B. Blood 101:2321. 

244. Lee, R. K., J. P. Cai, V. Deyev, P. S. Gill, L. Cabral, C. Wood, R. P. Agarwal, W. 

Xia, L. H. Boise, E. Podack, and W. J. Harrington, Jr. 1999. Azidothymidine and 

interferon-alpha induce apoptosis in herpesvirus-associated lymphomas. Cancer 

Res 59:5514. 

245. Canas, E., J. Pachon, F. Garcia-Pesquera, J. R. Castillo, P. Viciana, J. M. 

Cisneros, and M. E. Jimenez-Mejias. 1996. Absence of effect of trimethoprim-

sulfamethoxazole on pharmacokinetics of zidovudine in patients infected with 

human immunodeficiency virus. Antimicrob Agents Chemother 40:230. 

246. McCune, J. M., R. Namikawa, C. C. Shih, L. Rabin, and H. Kaneshima. 1990. 

Suppression of HIV infection in AZT-treated SCID-hu mice. Science 247:564. 

247. Boxenbaum, H., and C. DiLea. 1995. First-time-in-human dose selection: 

allometric thoughts and perspectives. J Clin Pharmacol 35:957. 

248. Mahmood, I., and J. D. Balian. 1996. Interspecies scaling: a comparative study 

for the prediction of clearance and volume using two or more than two species. 

Life Sci 59:579. 

249. Hertzberg, R. C. 1989. Fitting a model to categorical response data with 

application to species extrapolation of toxicity. Health Phys 57 Suppl 1:405. 

250. Paxton, J. W. 1995. The allometric approach for interspecies scaling of 

pharmacokinetics and toxicity of anti-cancer drugs. Clin Exp Pharmacol Physiol 

22:851. 



www.manaraa.com

 133

251. Ugrinovic, S., N. Menager, N. Goh, and P. Mastroeni. 2003. Characterization and 

development of T-Cell immune responses in B-cell-deficient (Igh-6(-/-)) mice with 

Salmonella enterica serovar Typhimurium infection. Infect Immun 71:6808. 

252. Linton, P. J., J. Harbertson, and L. M. Bradley. 2000. A critical role for B cells in 

the development of memory CD4 cells. J Immunol 165:5558. 

253. Carvalho, T. L., T. Mota-Santos, A. Cumano, J. Demengeot, and P. Vieira. 2001. 

Arrested B lymphopoiesis and persistence of activated B cells in adult interleukin 

7(-/)- mice. J Exp Med 194:1141. 

254. Roths, J. B., and C. L. Sidman. 1992. Both immunity and hyperresponsiveness to 

Pneumocystis carinii result from transfer of CD4+ but not CD8+ T cells into 

severe combined immunodeficiency mice. J Clin Invest 90:673. 

255. Limper, A. H., J. S. Hoyte, and J. E. Standing. 1997. The role of alveolar 

macrophages in Pneumocystis carinii degradation and clearance from the lung. J 

Clin Invest 99:2110. 

256. Macy, J. D., Jr., E. C. Weir, S. R. Compton, M. J. Shlomchik, and D. G. 

Brownstein. 2000. Dual infection with Pneumocystis carinii and Pasteurella 

pneumotropica in B cell-deficient mice: diagnosis and therapy. Comp Med 50:49. 

257. Garvy, B. A., J. A. Wiley, F. Gigliotti, and A. G. Harmsen. 1997. Protection 

against Pneumocystis carinii pneumonia by antibodies generated from either T 

helper 1 or T helper 2 responses. Infect Immun 65:5052. 

258. Harmsen, A. G., W. Chen, and F. Gigliotti. 1995. Active immunity to 

Pneumocystis carinii reinfection in T-cell-depleted mice. Infect Immun 63:2391. 

259. Zheng, M., J. E. Shellito, L. Marrero, Q. Zhong, S. Julian, P. Ye, V. Wallace, P. 

Schwarzenberger, and J. K. Kolls. 2001. CD4+ T cell-independent vaccination 

against Pneumocystis carinii in mice. J Clin Invest 108:1469. 

260. Gigliotti, F., and W. T. Hughes. 1988. Passive immunoprophylaxis with specific 

monoclonal antibody confers partial protection against Pneumocystis carinii 

pneumonitis in animal models. J Clin Invest 81:1666. 

261. Gigliotti, F., B. A. Garvy, and A. G. Harmsen. 1996. Antibody-mediated shift in 

the profile of glycoprotein A phenotypes observed in a mouse model of 

Pneumocystis carinii pneumonia. Infect Immun 64:1892. 



www.manaraa.com

 134

262. Brachtel, E. F., M. Washiyama, G. D. Johnson, K. Tenner-Racz, P. Racz, and I. 

C. MacLennan. 1996. Differences in the germinal centres of palatine tonsils and 

lymph nodes. Scand J Immunol 43:239. 

263. Lane, P., A. Traunecker, S. Hubele, S. Inui, A. Lanzavecchia, and D. Gray. 1992. 

Activated human T cells express a ligand for the human B cell-associated 

antigen CD40 which participates in T cell-dependent activation of B lymphocytes. 

Eur J Immunol 22:2573. 

264. Snapper, C. M., M. R. Kehry, B. E. Castle, and J. J. Mond. 1995. Multivalent, but 

not divalent, antigen receptor cross-linkers synergize with CD40 ligand for 

induction of Ig synthesis and class switching in normal murine B cells. A 

redefinition of the TI-2 vs T cell-dependent antigen dichotomy. J Immunol 

154:1177. 

265. Croft, M., and S. L. Swain. 1991. B cell response to fresh and effector T helper 

cells. Role of cognate T-B interaction and the cytokines IL-2, IL-4, and IL-6. J 

Immunol 146:4055. 

266. Kelsoe, G. 1996. The germinal center: a crucible for lymphocyte selection. Semin 

Immunol 8:179. 

267. Gilkeson, G. S., K. Bernstein, A. M. Pippen, S. H. Clarke, T. Marion, D. S. 

Pisetsky, P. Ruiz, and J. B. Lefkowith. 1995. The influence of variable-region 

somatic mutations on the specificity and pathogenicity of murine monoclonal anti-

DNA antibodies. Clin Immunol Immunopathol 76:59. 

268. McHeyzer-Williams, M. G., and R. Ahmed. 1999. B cell memory and the long-

lived plasma cell. Curr Opin Immunol 11:172. 

269. Beyer, W. E., A. M. Palache, J. C. de Jong, and A. D. Osterhaus. 2002. Cold-

adapted live influenza vaccine versus inactivated vaccine: systemic vaccine 

reactions, local and systemic antibody response, and vaccine efficacy. A meta-

analysis. Vaccine 20:1340. 

270. Kroon, F. P., G. F. Rimmelzwaan, M. T. Roos, A. D. Osterhaus, D. Hamann, F. 

Miedema, and J. T. van Dissel. 1998. Restored humoral immune response to 

influenza vaccination in HIV-infected adults treated with highly active 

antiretroviral therapy. Aids 12:F217. 



www.manaraa.com

 135

271. Grabar, S., V. Le Moing, C. Goujard, C. Leport, M. D. Kazatchkine, D. 

Costagliola, and L. Weiss. 2000. Clinical outcome of patients with HIV-1 infection 

according to immunologic and virologic response after 6 months of highly active 

antiretroviral therapy. Ann Intern Med 133:401. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © David James Feola 2005 



www.manaraa.com

 136

VITA 
 
David James Feola, Doctoral Candidate 
University of Kentucky, Clinical Pharmaceutical Sciences 
 

Birth 
February 2, 1973 
Parkersburg, West Virginia, United States of America 
 

Education 
University of Kentucky College of Pharmacy 
Bachelor of Science in Pharmacy 
August 1996 
 
University of Kentucky College of Pharmacy 
Doctor of Pharmacy 
May 1997 

 

Professional Positions 
Appalachian Regional Healthcare Regional Medical Center, Hazard, KY 
Clinical Pharmacist, May 1997-May 1998 
 
University of Kentucky Hospital, Lexington, KY 
Residency in Pharmacy Practice, July 1998-June 1999 
 
University of Kentucky Hospital, Lexington, KY 
Residency in Infectious Disease Pharmacy, July 1999-June 2000 
 
University of Kentucky Clinic, Lexington, KY 
Division of Infectious Diseases, Department of Internal Medicine 
HIV/AIDS Clinic, July 1999-June 2000 (part-time) 
 
University of Kentucky Hospital, Lexington, KY 
Critical Care Clinical Pharmacist, July 1999-August 2000 (part-time) 
 
University of Kentucky Hospital, Lexington, KY 
Clinical Staff Pharmacist, July 1998-August 2005 (part-time) 
 

Honors 
Dean Earl P. Slone Leadership Award, University of Kentucky College of Pharmacy, 
1995, 1996, 1997. 
 



www.manaraa.com

 137

Kappa Psi Graduate Chapter Award, University of Kentucky Graduate Chapter, Kappa 
Psi Pharmaceutical Fraternity, 1995. 
 
Outstanding Graduating Man Award, University of Kentucky College of Pharmacy, 
1997. 
 
Inducted, Rho Chi Pharmaceutical Honor Society, 1997. 
 
University of Kentucky College of Pharmacy and University of Kentucky Hospital 
Pharmacy Residency Program Impact Award, 2000. 
 
University of Kentucky College of Pharmacy and University of Kentucky Hospital 
Pharmacy Residency Program Outstanding Resident Award, 2000. 
 
Research Challenge Trust Fund Scholar, University of Kentucky Graduate School, 
2000-present. 
 
American Foundation for Pharmaceutical Education Pre-doctoral Fellowship Award, 
2002, 2003, and 2004. 
 

Publications 
Feola DJ and Rapp RP.  Effect of food intake on the bioavailability of itraconazole 
[letter].  Clinical Infectious Diseases 1997 Aug;25(2):344-5. 
 
Feola DJ.  Update on anticoagulation.  Current Topics 1999 Jan;29(1):2-3. 
 
Evans ME, Feola DJ, and Rapp RP.  Polymyxin B sulfate and colistin: old antibiotics for 
emerging multiresistant gram-negative bacteria.  Annals of Pharmacotherapy 
1999;33:960-7. 
 
Feola DJ and Thornton AC.  Metronidazole-induced pancreatitis in a patient with 
recurrent vaginal trichomoniasis.  Pharmacotherapy 2002 Nov;22(11):1508-10. 
 
Feola DJ and Garvy BA.  Zidovudine plus sulfamethoxazole-trimethoprim adversely 
affects B lymphocyte maturation in bone marrow of normal mice. International 
Immunopharmacology 2005.  In press. 
 
Feola DJ, Thornton AC, and Garvy BA.  Effects of antiretroviral therapy on immunity in 
patients infected with HIV.  Current Pharmaceutical Design 2006 (12).  In press. 
 
Thornton AC, Hoven A, Feola DJ, and Murphy B.  Diarrheal Diseases, in APIC Text of 
Infection Control and Epidemiology:  Second Edition, Chapter 100, 100-1-100-22, 
Association for Professionals in Infection Control and Epidemiology, Inc, 2005. 


	EFFECT OF COMBINATION EXPOSURE TO ZIDOVUDINE AND SULFAMETHOXAZOLE-TRIMETHOPRIM ON IMMUNE RESPONSE IN MICE AND HUMANS
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1:  Introduction
	A. Overview
	B. Immune Response and HIV
	C. Drug Treatment:  The Good and the Bad
	D. B Cell Development
	E.  Project Overview

	Chapter 2:  Combination Exposure in Normal Mice
	A. Overview
	B. Materials and Methods
	C. Results
	D. Conclusions

	Chapter 3:  Mechanistic Investigation
	A. Overview
	B. Materials and Methods
	C. Results
	D. Conclusions

	Chapter 4:  Impact on Host Response
	A. Overview
	B. Materials and Methods
	C. Results
	D. Conclusions

	Chapter 5:  Clinical Impact
	A. Overview
	B. Materials and Methods
	C. Results
	D. Conclusions

	Chapter 6:  Discussion
	A. Results Summary
	B. Mechanism
	C. Experimental Considerations 
	D. Host Response
	E. Conclusions

	References
	Vita

